История инженерной деятельности
История инженерной деятельности читать книгу онлайн
В. В. Морозов, В. И. Николаенко
ИСТОРИЯ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИ
Министерство образования и науки Украины
Национальный технический университет
«Харьковский политехнический институт»
Курс лекций для студентов всех специальностей дневного и заочного обучения
УТВЕРЖДЕНО редакционно-издательским советом университета
Харьков 2007
В учебном пособии анализируется содержание инженерной деятельности, рассматривается развитие с древнейших времен для нашего времени.
Пособие предназначено для студентов дневной и заочной форм обучения, а также всех, кто интересуется историей развития техники.
Історія інженерної діяльності.
Курс лекцій для студентів усіх спеціальностей денного та заочного форм навчання – В.В.Морозов, В.І.Ніколаєнко – Харків: НТУ “ХПІ”, 2007. – 336 с. – Рос.мовою.
В учбовому посібнику аналізується зміст інженерної діяльності, розглядається розвиток техніки з найдавніших часів до сучасності.
Посібник призначено для студентів денної та заочної форм навчання, а також для усіх, хто цікавиться історією розвитку техніки.
© В.В.Морозов, В.І.Ніколаєнко, 2007 р.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Но самая перспективная отрасль использования водородно-кислородных топливных элементов – энергетика. Так, при малой нагрузке электростанции (например, ночью) топливный элемент функционирует как электролизер – разлагает воду и накопляет водород и кислород в газгольдерах высокого давления. При перегрузке электростанции водородно-кислородный элемент «сжигает» сжатые водород и кислород, и работает как электрохимический генератор, то есть вырабатывает дополнительный электрический ток.
Современная техника, в основном ядерная энергетика, требует огромного количества тяжелой воды, которая служит прекрасным замедлителем нейтронов в ядерных реакторах и источником для получения дейтерия.
Тяжелую воду можно получить электрохимическим способом – электролизом обычной воды. Дело в том, что в молекуле воды атом дейтерия связан с атомом кислорода прочнее, чем атом водорода. А в растворе ион дейтерия двигается медленнее, чем ион водорода. Поэтому во время электролиза разлагается в основном обычная вода, а тяжелая вода накопляется в остатке. Высококонцентрированные растворы тяжелой воды можно разделить фракционной перегонкой и получить 100-процентную тяжелую воду.
Но специально разлагать воду электролизом с целью получения тяжелой воды не выгодно. Поэтому тяжелую воду выделяют из остатков в электролизерах при получении водорода, кислорода, хлора, едкого натра и т.п.
Электрохимия приходит также на помощь в деле охраны окружающей среды. При очистке сточных вод и отработанных газов применяется электролиз.
Второй вид помощи, который оказывает электролиз в борьбе за охрану окружающей среды, связан с возможностью заменять производства с выделением вредных, загрязняющих окружающую среду веществ, электрохимическими производствами, где загрязнение намного меньше. Очевидно, например, гидрометаллургические производства намного чище пирометаллургических, в результате работы которых выделяются и теплота, и пыль, и дым.
Важное место занимают электрохимические методы для количественного определения веществ в почве, воде, воздухе, и даже в живых организмах. Одним из таких методов является электроанализ, при котором проводится электролиз и взвешивается выделившееся за определенное время вещество. Таким методом является и полярография, где чаще всего электролиз происходит на ртутный электрод и о свойствах данного вида ионов можно судить по потенциалу разложения.
При потенциометрическом титровании наблюдают электродвижущую силу гальванического элемента, созданного при участии тех ионов раствора, которые следует определить.
В Ы В О Д Ы
Возникнув в предисторические времена, пройдя многовековой путь развития, химия заняла видное место среди естественных наук, которые представляют собой систему познания материального мира и играют выдающуюся роль в жизни общества.
Электрохимия, представляющая обширнейшую и важнейшую область химии, развивалась бок о бок с наукой о веществах. Достижения электрохимии позволили изучить строение молекул, узнать о том, как они связаны между собой, как происходят окислительно-восстановительные реакции и многие другие закономерности превращения веществ.
Электрохимические методы лежат в основе многочисленных промышленных процессов, дающих необходимые человеку химические продукты: от простейшего электролиза воды с целью получения водорода и кислорода до электрохимического синтеза сложных органических соединений.
Благодаря достижениям электрохимии появилась возможность получения многих материалов, которые невозможно получить другими методами.
Электрохимия помогает людям бороться с коррозией, изготавливать сложнопрофильные, тонкостенные точные изделия, получать сверхчистые металлы.
Электрохимические процессы лежат в основе химических источников тока - элементов и аккумуляторов.
Немаловажна роль электрохимии в охране окружающей среды – очистке сточных вод и отработанных газов.
Не последнее место занимают и электрохимические методы количественного определения веществ в газообразных, жидких, твердых телах и даже в живых организмах.
Инженерная деятельность в области электрохимии отличается большим многообразием решения оригинальных инженерных задач, подходов, поисков. Усилиями коллективов ученых, инженеров, техников появляются материалы, осваиваются электрохимические методы, дающие возможность получать сложные органические соединения и многое другое.
Электрохимия занимает важное место среди других естественных наук в жизни человека.
Тема ХІІ. БИОТЕХНОЛОГИИ, ИХ СУЩНОСТЬ,
ПРОШЛОЕ И ПЕРСПЕКТИВЫ РАЗВИТИЯ
И ПРИМЕНЕНИЯ
Большинство из наших современников – инженеров-специалистов в какой-то мере готовы ответить на вопрос «технология», «технологический процесс», и могут в первую очередь рассказать о технологиях в машиностроении, самолетостроении, металлургических процессах, химических и космических технологиях и других.
Меньше людей могут ответить на вопрос о сущности биотехнологии. Это не случайно. Длительное время биологической науке, в том числе и отечественной, не уделялось должного внимания. Такое положение сохраняется, к сожалению, и в настоящее время. Вместе с тем, Организация Объединенных Наций официально признала технологией ХХI века – биотехнологию.
Сегодня биотехнология, говоря языком транспарантов, – движущая сила научно-технического прогресса любой страны. Рассмотрение сущности биотехнологии, ее перспектив развития и применения в народном хозяйстве составляет содержание настоящей лекции.
1. Сущность биотехнологий и история зарождения.
2. Перспективы развития и применения, значение.
Мудрый царь Соломон когда-то говорил: «Словами мы познаем суть вещей». Последуем совету мудрого Соломона и попытаемся понять суть биотехнологии через посредство составляющих это слово частей «биос» и «техне». Это слова несомненно, греческого происхождения. С первой частью, означающей «жизнь», мы встречаемся в таких словах, как «биология» – изучение жизни, «биоценоз» – живое сообщество.
Вторая часть слова «биотехнология» – «техне» – восходит к «текс» – вить, прясть, делать что-то руками. Отсюда слово текстиль, текст, контекст, тектоника, архитектура, технология. Следовательно, возможен перевод слова «биотехнология» как производство с помощью живых существ или технология живого.
Из самого названия «биологическая технология» следует, что это – технологические процессы с использованием биологических систем: живых организмов и компонентов живой клетки. Системы могут быть разные – от микробов и бактерий до ферментов и генов. Таким образом, биотехнология – это производство, основанное на последних достижениях современной науки: генетической инженерии, физико-химических ферментов, молекулярной диагностики, селекционной генетики, микробиологии, химии антибиотиков, комбинаторной химии.
Современные методы анализа пыльцы растений говорят нам, что уже девять с половиной тысяч лет назад на территории современной Франции люди выращивали чечевицу. Несколько раньше началось земледелие на Ближнем Востоке, который многие ученые считают колыбелью цивилизации. Родившись в долинах полноводных рек, главным образом между реками Тигром и Ефратом, земледелие дало человеку один из первых продуктов биотехнологии – зерно. Здесь в Междуречьи (по-гречески – Месопотамия) существовали государства Шумер, Аккад, Ассирия. Древние шумеры изобрели клинопись на табличках, в шумерских городах функционировали школы, в которых детей учили решать задачи, о чем говорят глиняные таблички, которые находят археологии. Среди этих глиняных табличек встречаются и такие, где есть задачи на определение количества провианта, необходимого для определенного количества работников: меры зерна и кувшины ячменного пива. Наличие указаний на пиво является одним из древнейших свидетельств использования людьми биотехнологических процессов. Ведь пиво невозможно приготовить без применения микроорганизмов, превращающих сахар в спирт. К сожалению, на табличках ничего не говорится о выпечке хлеба. По-видимому, жители этого региона ели хлеб пресным.