КВ-приемник мирового уровня? Это очень просто!
КВ-приемник мирового уровня? Это очень просто! читать книгу онлайн
… С чего начать будущему электронщику, какое направление выбрать? Компьютеры, телевизоры, видики?… Но, учитывая их колоссальную сложность и специфику — это задача сомнительная! Правда, можно «лепить» целые системы из готовых компьютерных плат. Но где же тут особое творчество?
Да и микросхемы большого уровня интеграции, поверьте, мало чем могут помочь для развития у радиолюбителя умения «читать» любые схемы… Необходима такая область, такое направление электроники, которое, обеспечивая накопления бесценного опыта в конструировании, имело бы и самостоятельную ценность.
Такая область существует — это создание высокочувствительных (как коротковолновых, так и всеволновых) приемников, основанных на современной профессиональной идеологии создания подобной аппаратуры.
От азов электроники и радиотехники — к современному высокочувствительному супергетеродинному приемнику с двойным преобразованием частот и верхней первой ПЧ… Оснащенному высокоэффективной цифровой шкалой настройки — вот о чем эта книга! Те, кто хочет самостоятельно изготовить и отладить приемник мирового уровня — эта книга для вас!
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
«Н»: Почему именно его?
«С»: Этот очень хороший, износоустойчивый десятиоборотный потенциометр обладает повышенной надежностью. А это немаловажно!
«А»: А что можно сказать о КОНДЕНСАТОРАХ? Не вообше, а конкретно?
«С»: Система из двух обкладок или пластин, разделенных диэлектриком и обладающая способностью накапливать электричество, называется конденсатором. Емкость конденсатора, как известно, есть физический параметр, определяемый отношением количества накапливаемых на отрицательном полюсе электронов к приложенному напряжению. УДЕЛЬНАЯ ЕМКОСТЬ — отношение емкости к объему (либо массе) конденсатора. НОМИНАЛЬНАЯ ЕМКОСТЬ — это та емкость, которая указана на конденсаторе заводом-изготовителем. Она гостируема и составляет некоторый стандартный ряд.
«А»: Однако фактическая емкость каждого конденсатора отличается от номинальной. Но в пределах допуска.
«С»: Да, есть такой параметр, как ДОПУСТИМОЕ ОТКЛОНЕНИЕ ЕМКОСТИ. Нам очень важен такой параметр, как ЭЛЕКТРИЧЕСКАЯ ПРОЧНОСТЬ КОНДЕНСАТОРА.
«А»: Это она характеризуется НОМИНАЛЬНЫМ РАБОЧИМ НАПРЯЖЕНИЕМ? То есть максимальным напряжением, при котором конденсатор может надежно работать в течение тысяч часов?
«С»: Ты прав, мой друг! Просто для справки — различают еще ИСПЫТАТЕЛЬНОЕ НАПРЯЖЕНИЕ, а также ПРОБИВНОЕ.
«А»: Есть еще такой параметр, как СОПРОТИВЛЕНИЕ ИЗОЛЯЦИИ КОНДЕНСАТОРА. Она представляет собой отношение напряжения, приложенного к конденсатору к его току утечки.
«С»: Следует заметить, что емкость конденсатора зависит от частоты приложенного напряжения. И хотя, чисто теоретически, конденсаторы не рассеивают энергию в виде тепла, реальные конденсаторы, тем не менее, характеризуются потерей мощности. Это связано с проводимостью диэлектрика, нагревом металлических элементов и т. п. Очень важной характеристикой конденсатора является ТКЕ — ТЕМПЕРАТУРНЫЙ КОЭФФИЦИЕНТ ЕМКОСТИ.
«А»: Но ведь ТКЕ — обратимый параметр? То есть если температура становится прежней, то и емкость соответственно?
«С»: Да, к общему удовольствию! А вообще ТКЕ — представляет собой относительное изменение емкости при изменении температуры на 1 °C.
«А»: Однако мало радости доставляет ТКЕ если конденсатор входит в состав высокочастотной резонансной цепи!
«С»: Мало — это не то слово! Особенно это касается гетеродинов! Поэтому, в зависимости от величины ТКЕ, конденсаторы разделяются на группы. Каждая имеет свое значение ТКЕ!
«Н»: Давайте, на всякий случай, составим на сей счет небольшую таблицу!
«А»: Это разумно! Итак, смотри таблицу (табл. 18.1).
«Н»: А почему бы ВСЕ конденсаторы не выпускать на основе керамики МП 0 и все дела?
«С»: Это и ненужно, и невозможно! Ненужно, поскольку в состав контуров входит, как известно, еще и катушка индуктивности, которая (как увидим позднее) тоже характеризуется аналогичной величиной ТКИ (температурный коэффициент индуктивности). А применение керамики типа МП 0 не позволило бы ввести в контур термокомпенсацию!
«А»: А невозможно, очевидно, потому, что в керамических конденсаторах большой емкости применена керамика с колоссальным значением диэлектрической проницаемости! И это понятно, если принять во внимание степень миниатюрности этих конденсаторов.
«С»: Но вот с ТКЕ таких конденсаторов дело обстоит хуже! Я занес в таблицу группы от Н—10 до Н—90 включительно!
«Н»: А что означают звездочки?
«С»: Только тот факт, что для этих групп характерен не ТКЕ, а относительное изменение их емкости в интервале температур от -60 °C до +85 °C соотнесенное с их емкостью при +20 °C.
«А»: Будем ли подробно говорить о классификации конденсаторов?
«С»: Сейчас нет, поскольку об этом будем упоминать при описании компонентной базы, требующейся для практической реализации узлов приемника. Отметим только, что в нашем случае наиболее применимыми будут керамические конденсаторы типов: КМ (монолитные), К10—17 и К10—23 (керамические прямоугольные). А также некоторые другие.
«Н»: А почему вы ничего не говорите об электролитах?
«С»: Исключительно потому, что о них следует сказать особо! Электролитические и оксидно-полупроводниковые конденсаторы отличаются от всех прочих типов прежде всего своей КОЛOCCAЛЬНОЙ удельной емкостью!
Ну и по конструкции, по технической реализации. Они в качестве диэлектрика содержат оксидный слой на металле, являющийся анодом. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах) или слой полупроводника (в оксидно-полупроводниковых), нанесенный непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги.
«А»: А какие из них самые предпочтительные?
«С»: Вопрос далеко непростой!.. Я вспомнил анекдот о сотрудниках бухгалтерии одного предприятия, занятых разгадыванием кроссворда. Один из них спрашивает у другого: «Ревизор» Гоголя — это комедия или трагедия?» На что тот отвечает, что это зависит от того, откуда его (то есть ревизора) присылают!
Так и электролитические конденсаторы! Формально, самые лучшие из них (причем сразу по всем параметрам) — это танталовые. Затем идут ниобиевые и оксидно-полупроводниковые. И уже после них — алюминиевые. Танталовые, например, характеризуются тем, что могут работать как при очень низких, так и при высоких температурах. Например, К52—1Б (от-60 до +85 °C); К52—2 (от-60 до +135 °C) и т. д. У них очень малы токи утечки и очень велика удельная емкость. По всем этим параметрам ниобиевые им заметно уступают.
«Н»: А алюминиевые?
«С»: Вот именно по их поводу я и рассказал анекдот! Здесь ведь все дело в том, где изготовлен алюминиевый электролитический конденсатор…
«Н»: На каком заводе?
«А»: Скорее на территории какой страны находится этот завод! Мне как-то попались электролиты К50—35 без «чулка»! Это был просто какой-то кошмар! У новых конденсаторов на 470 мкФ — почти миллиамперные утечки!
«С»: Действительно, с отечественными электролитами дела обстоят очень неблагополучно! Из алюминиевых можно без опасений употреблять в серьезных разработках только К50—16 (в «чулке») и К50—35Б. А также К50—40Б. Кстати, температурный диапазон для К50—16 — от -20 до +70 °C.
Но возьмите, например, японские АЛЮМИНИЕВЫЕ электролиты фирмы RUBICON. При тех же емкостях и напряжении, японские изделия занимают объем В НЕСКОЛЬКО РАЗ МЕНЬШИЙ! Их токи утечки находятся на уровне отечественных ТАНТАЛОВЫХ!
«А»: А какой у них температурный диапазон?
«С»: Даже у самых миниатюрных японских, американских и европейских изделий он обязательно указывается на «чулке» корпуса. Их алюминиевые электролиты широкого применения характеризуются диапазоном от -40 до +85 °C. А специального применения от-60 до +105 °C!
Очень хороши и электролиты японской фирмы N ЕС; американской фирмы WESTON; голландской PHILIPS. Отличные изделия производят тайваньские и южнокорейские фирмы. А также индийские.
«Н»: И эти конденсаторы можно свободно достать?
«С»: Без особых проблем!
«А»: А какие конденсаторы СНГ можно применять без опасений?
«С»: Я рекомендую только следующих типов: танталовые К52—1 (К52—1Б); оксидно — полупроводниковые К53—19; ниобиевые К53—18; алюминиевые — К50—35Б и К50—40Б (в «чулке»). Ограниченно — К50—16 (только в «чулке»). И вышеупомянутые забугорные — без ограничений!
«А»: Мы еще ничего не говорили о подстроечных конденсаторах!
«С»: Да, это важная для нас тема. Подстроечные конденсаторы применяются как в колебательных контурах для точной подстройки емкости, так и в высокочастотных схемах типа гетеродина или смесителя. В специальной технике боле£ употребительны подстроечные конденсаторы с воздушным диэлектриком. Но достаточно хороши и керамические: КТ4—21; КТ4—25.