История электротехники
История электротехники читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Большое значение имеют исследования коронного разряда и создание его математической модели (В.И. Попков, Н.Н. Тиходеев, Г.Н. Александров, В.В. Щербачев, В.И. Левитов и др.). В последние годы велись интенсивные исследования возможности передачи энергии при помощи потока электронов — создания электрокинетических линий электропередачи. Поток электронов, ускоренных в электрическом поле до энергии 1 МэВ, в трубе с разреженным до уровня технического вакуума газом способен передавать электроэнергию на дальние расстояния и служить в качестве ЛЭП (Е.А. Абрамян). Особенности взаимодействия ЭМП с потоком заряженных частиц связаны с созданием оригинальных методов реализации двоичных кодов путем переключения струи заряженного газа при помощи электрического поля (А.А. Денисов). Такая система логических элементов была создана и носит название «эоника».
4.13. ПРЕОБРАЗОВАНИЕ И ГЕНЕРАЦИЯ ЭМП В ТЕХНОЛОГИЧЕСКИХ ЦЕЛЯХ
Развитие промышленности и ее электротехнической отрасли, а также необходимость создания новых изделий с повышенными качественными показателями и эффективностью способствовали созданию новых технологий на основе открытия и использования различных эффектов, связанных с электромагнитными явлениями. Создание технологий, особенно основанных на новых физических эффектах, требует прежде всего понимания физической картины явлений и умения исследовать, рассчитывать влияние множества факторов на технологический процесс. Подготовка вузами страны инженеров-электриков, изначально была направлена на понимание законов физики, происходящих в реальных устройствах электромагнитных явлений, позволяла им успешно решать задачи создания новых технологий. Именно благодаря этим обстоятельствам успешно развилась техника высокочастотного нагрева, впервые предложенная В.П. Вологдиным в начале XX в. и получившая широкое распространение благодаря развитию техники высокой частоты, связанной с созданием новых отраслей производства аппаратуры для связи и радиотехники. Технология высокочастотного нагрева диэлектриков и полупроводников была предложена Б. Р. Лазаренко, и на ее основе развито производство полупроводниковых материалов.
В промышленности широко внедрялись электрические методы очистки выбрасываемых тепловыми электростанциями отходящих газов и сепарация руды при помощи ЭМП. В связи с повышением требований к охране окружающей среды проблема улучшения эффективности работы электрофильтров на электростанциях потребовала разработки новых методов расчета и использования эффектов взаимодействия газов и ЭМП (И.П. Верещагин). В связи с обеднением руды требуется повышение эффективности сепарации, для чего нужно было достичь более высоких значений градиентов магнитного или электрического полей (Н.А. Черноплеков).
Важное направление в ТЭ связано с изучением и прикладными сторонами использования явления электризации при трении, контакте и деформации (статическое электричество, или трибоэлектричество). Такая электризация во многих случаях нежелательна и подчас представляет опасность. Так, например, в процессе изготовления и эксплуатации современных интегральных схем, которые могут быть выведены из строя электрическим полем относительно низкой напряженности, необходимо исключить возможность влияния такого явления. Появление трибоэлектричества при пуске космических кораблей может (и были случаи) привести к аварии, и это обстоятельство потребовало разработки специальных мер защиты (К.С. Демирчян). Новое направление технологического характера было разработано на основе эффекта, связанного с возникновением гидравлических волн высокого давления в жидкости, возникающих вследствие электрического разряда в жидкой среде, открытого Л.А. Юткиным в Высоковольтной лаборатории им. А.А. Горева в Ленинградском политехническом институте.
Существование связей между электрическими и неэлектрическими явлениями позволило создать специальную область в измерительной технике — электрические измерения неэлектрических величин, на основе использования влияния неэлектрических воздействий (например, давления, температуры, деформации, влажности и др.) на электрические параметры (сопротивление, индуктивность, емкость) и процессы (возникновение ЭДС в термопарах, появление заряда на пьезокристаллах). Сфера применения этого метода измерения настолько обширна, что было создано новое направление производства — выпуск первичных преобразователей. Важное значение приобрела разработка теории и способов создания устройств непосредственно преобразующих химическую и тепловую энергию в электрическую (Н.С. Лидоренко, Л.М. Биберман, В.И. Пищиков и др.).
Многочисленные научные и прикладные проблемы, связанные с ЭМП, должны более полно входить в раздел теории поля современных теоретических основ электротехники.
4.14. ВЛИЯНИЕ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ НА РАЗВИТИЕ ТЭ
Для создания новых устройств при помощи их математических моделей важное значение имеет возможность представления количественных характеристик, определяющих исследуемые процессы нового устройства, в виде аналитических зависимостей и численных данных. Важнейшими для практики теоретическими проблемами оказались разработка методов учета особенностей протекания электромагнитных процессов в зависимости от электромагнитных свойств сред и их конфигурации, формирование принципов и методов анализа и синтеза математических моделей электротехнических устройств, а также диагностирование процессов в них и управление ими. История создания общих подходов к решению этих проблем — важнейшая часть истории ТЭ. Поскольку ТЭ является мостом между фундаментальной и прикладной науками, она вынуждена была выбирать и разрабатывать такие математические методы, которые позволяют производить аналитические исследования и численные расчеты с необходимой для практики точностью. Возможность получения аналитических решений, как правило, определяется сложностью математической модели. Точность же численных расчетов в рамках данной математической модели определяется возможностями аппаратных средств, используемых для выполнения численных расчетов.
По этим причинам методы, предлагаемые в ТЭ, развивались с развитием новых разделов математики и средств вычислительной техники. Появление ЭВМ и их внедрение в практику, начиная с 1950 г., оказало решающее воздействие на ТЭ.
Практика использования ЭВМ для расчета электрических цепей привела к существенному изменению направления теоретических разработок в ТЭ. Ограниченные возможности существоваших до появления ЭВМ средств численных расчетов стимулировали развитие методов, позволяющих снижать количество уравнений, вынуждали развивать теорию подобия и создавать физические и математические аналоги электрических цепей.
Так, например, в 50-е годы широкое распространение получили расчетные столы для исследования сложных цепей и систем, физические модели электроэнергетических систем (М.П. Костенко, Л.Р. Нейман, В.А. Веников, и др.), аналоговые и цифроаналоговые модели (Г.Е. Пухов, Б.Я. Коган, Н.Е. Кобринский, Г. Ольсон и др.) и цифровые дифференциальные анализаторы (А.В. Каляев) для исследования переходных процессов. Ограниченное математическое обеспечение первого и второго поколения ЭВМ вынудило записывать уравнения электрических цепей в виде системы дифференциальных уравнений, разрешенных относительно первой производной, т.е. в форме уравнений Коши. Поскольку динамические свойства цепей определяются появлением ЭДС при изменении магнитного потока и токов смещения вследствие изменения потока электрического смещения, то уравнения Коши для цепей естественно записать для переменных потокосцеплений Ψ и электрических зарядов Q. Поскольку именно таков был подход к выбору значимых переменных в термодинамике, то и в ТЭ эти переменные были названы переменными состояния. В 1957 г. Т.Р. Башков впервые записал уравнения электрических цепей относительно переменных состояния. Развитие матрично-топологического метода в большой мере определялось необходимостью автоматизировать ввод данных о топологии цепи и формировать на этой основе уравнения состояния (Г. Крон, Р. Рорер, Ф.Х. Брэнин, С.Д. Фенвес, Э. Ку, Д.Р. Рос, И.П. Норенков, В.Н. Ильин и др.).