-->

История электротехники

На нашем литературном портале можно бесплатно читать книгу История электротехники, Коллектив авторов-- . Жанр: Технические науки. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
История электротехники
Название: История электротехники
Дата добавления: 15 январь 2020
Количество просмотров: 305
Читать онлайн

История электротехники читать книгу онлайн

История электротехники - читать бесплатно онлайн , автор Коллектив авторов
Книга посвящена истории электротехнической науки и промышленности как в нашей стране, так и за рубежом. В ней рассмотрены все основные этапы развития электротехники, начиная с ее зарождения и до наших дней. Показана роль отечественных и зарубежных ученых, внесших наибольший вклад в развитие электротехники. Подробно и конкретно рассмотрены основные достижения различных отраслей электротехники: электроэнергетики; электромеханики; электротехнологии; электрического транспорта; светотехники; электрических материалов и кабелей; промышленной электроники и электроизмерительной техники. В главе «Персоналии» приведены краткие биографические сведения о крупнейших отечественных и зарубежных ученых и специалистах в области электротехники.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 40 41 42 43 44 45 46 47 48 ... 262 ВПЕРЕД
Перейти на страницу:

Работы К.С. Демирчяна, П.А. Бутырина позволили установить, что преобразование Лапласа со сдвигом во времени, представляющее собой установившуюся реакцию системы с импульсной переходной функцией вида ept на воздействие f(t), порождается интегралом Дюамеля для бесконечного интервала времени, т.е.

История электротехники - i_056.png

Такое преобразование позволяет получить решение для установившегося процесса непосредственно через изображение задающей функции F(p,t), которая для данного преобразования является функцией времени. Если система дифференциальных уравнений записана относительно переменных состояний в виде матричного уравнения dx/dt = Ax + f (t) и изображение f(t) имеет вид F(p,t), то решение для установившегося процесса для системы уравнений состояний можно записать в виде хуст = — F(A, t), и тогда полное решение системы дифференциальных уравнений будет иметь вид x(t) = eAt[x(0) + F(A,0)] — F(A,t)]. Такой подход позволяет исключить трудоемкий процесс обратного преобразования Лапласа для нахождения оригинала x(t) изображения X(p) и установить непосредственную взаимосвязь между интегралом Дюамеля и преобразованием Лапласа со сдвигом. Применение этого подхода в случае электрических цепей с периодически изменяющимися параметрами позволяет в ряде случаев (например, электрические машины) отыскать аналитические решения (П.А. Бутырин). Решение дифференциальных уравнений может быть найдено не только на основе преобразования Лапласа или Фурье (где в качестве ядра интегрального преобразования использована экспоненциальная (Лаплас) или тригонометрическая (Фурье) функция), но и других видов функций. В этом отношении методы на основе представления входящих в дифференциальные уравнения функций при помощи степенных рядов Тейлора (Г.Е. Пухов) являются оригинальными. Преимуществом этого метода является возможность его использования и для случая нелинейных уравнений.

В СССР теория переходных процессов начала привлекать внимание в связи с быстрым развитием электроэнергетики и расширением прикладных областей применения электрических цепей в приводе, электротермии, связи, автоматическом управлении и др. Важным этапом для развития исследований в этой области явилось появление работ Р. Рюденберга, К.А. Круга, молодых ученых A.M. Данилевского и A.M. Эфроса, погибших во время Великой Отечественной войны, и многих специалистов в области математики. 40–50-е годы стали новым этапом развития теории переходных процессов. Была разработана теория, предложены критерии и методы подобия для физического и математического моделирования переходных процессов в сложных системах с электромеханическими преобразователями энергии (М.П. Костенко, Л.Р. Нейман, В.А. Веников). Развитие ЕЭС потребовало разработки теории переходных процессов в электрических цепях, содержащих электрические машины и линии с распределенными параметрами, которые существенным образом влияют на перенапряжения в системах (М.В. Костенко, С.А. Ульянов, Л.Г. Мамиконянц, К.П. Кадомская, М.Л. Левинштейн, В.В. Бушуев, Ч.М. Джуварлы, Л.А. Жуков, Ю.Г. Шакарян, В.В. Постолатий и др.).

Наряду с классическим и операторным методами широкое распространение получил частотный, или спектральный метод расчета переходных процессов. В течение 1950–1970 гг. частотные методы получили широкое внедрение в расчетную практику благодаря возможности экспериментального определения спектра частот входных и передаточных функций реальных устройств. Частотные характеристики ЛЦ полностью характеризуют поведение цепи, поскольку они зависят от ее инерционных свойств (наличия индуктивных и емкостных элементов) и от интенсивности рассеяния энергии ЭМП (наличия резистивных или эквивалентных им элементов) в ней. Поскольку любое воздействие может быть представлено своим спектром частот, то знания частотных свойств цепи достаточно, чтобы выяснить реакцию цепи на интересующее воздействие. Специфичными для этого метода оказались расчетные приемы, позволяющие описать переходные процессы на основе частотных характеристик цепи и воздействующих на нее возмущений. Частотные характеристики электротехнических устройств требовали особенно глубокого изучения в области автоматики и управления, усилительной техники и электросвязи. Поэтому именно в этих областях впервые с исчерпывающей полнотой была установлена зависимость между переходными процессами и частотными характеристиками и были разработаны методы расчета этих процессов. Этим вопросам в советской научной литературе уделялось большое внимание. Спектральные характеристики анализировались многими учеными, в том числе Л.И. Мандельштамом, Б.В. Булгаковым, А.А. Харкевичем, А.А. Вороновым, Г.А. Атабековым, В.В. Солодовниковым, В.А. Тафтом, И.С. Гоноровским, П.Н. Матхановым, Г. Боде, Э.А. Гиллемином, Дж. Карсоном и др. В практику расчета и проектирования электромагнитных процессов в электрических машинах большой вклад в части использования частотных методов внесли Я.М. Казовский, А.И. Важное, И.З. Богуславский и др. Использование частотных методов оказалось особенно продуктивным при анализе устойчивости состояния линеаризированных систем. Проблема устойчивости возникала также для систем с обратными связями. В этой связи следует отметить работы X. Найквиста (1932 г.), Г. Боде, Я.З. Цыпкина, А.В. Михайлова, который установил новый критерий устойчивости системы, и В.В. Солодовникова, предложившего замечательный по своей простоте и точности метод приближенного расчета переходных процессов по частотным характеристикам. Этот метод, известный как метод трапеций, получил широкое распространение в СССР.

В теории переходных процессов в последние десятилетия важное место заняли проблемы, связанные с протеканием процессов при наличии помех и под воздействием сил, носящих случайный или хаотический характер. Важность выяснения особенностей протекания таких процессов связана с повышением точности расчетных методов, с одной стороны, и необходимостью выделения полезной информации при выполнении полевых измерений в целях диагностики реального состояния исследуемой системы или устройства — с другой. Особое значение эта проблема приобретает при регулировании процессов в сложных электрических системах в реальном масштабе времени (Ю.Н. Руденко, Ф. Швепп, Д.В. Ром, А.З. Гамм, Л.А. Крумм, В.А. Баринов, С.А. Совалов и др.).

4.7. ПРОБЛЕМЫ СИНТЕЗА ЛЦ

Обстоятельное и глубокое изучение свойств ЛЦ позволило выявить основные закономерности и математические особенности функций, описывающих свойства этих цепей (Г. Боде, Э.А. Гиллемин, Н. Балабанян, А.А. Фельдбаум и др.). На их основе оказалась возможной постановка и решение задачи синтеза определенного класса линейных электрических систем, таких, например, как электрические фильтры, формирующие линии и усилители. Следует выделить исследования (Н. Балабанян, Д.А. Калахан, Э.А. Гиллемин, К. Су, В.А. Тафт, П.А. Ионкин, В.Г. Миронов, А.А. Ланне, П.Н. Матханов, А.В. Бондаренко, И.А. Орурк и др.), в которых формулировались условия реализуемости ЛЦ. В отличие от задач анализа решения задач синтеза электрических цепей обладают свойством многовариантности, что в свою очередь ставит проблемы нахождения оптимального решения в зависимость от условий реализации устройств, поставленных перед разработчиком. Среди этих условий важнейшим является физическая реализуемость электрической цепи при помощи пассивных элементов. Наибольшее ограничение накладывается на положительность параметров R, L, С. Несмотря на долголетние исследования и разработки методов синтеза ЛЦ, круг реализуемых задач остается узким, и в этой области теории остается обширное поле деятельности. Задачи синтеза были рассмотрены применительно и к цепям с перестраиваемыми структурами, в частности для синтеза активных электрических фильтров с использованием переключаемых конденсаторов (В.Г. Миронов).

1 ... 40 41 42 43 44 45 46 47 48 ... 262 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название