Портрет трещины
Портрет трещины читать книгу онлайн
Разрушение… Мы сталкиваемся с ним ежедневно, ежечасно. Вот слабый стебель травы пророс сквозь асфальт и победно зеленеет. Как это призошло? Вот совершенно неожиданно переломилась мощная металлическая конструкция, которой стоять бы века… Почему? В чем причина катастроф и разрушений, происходящих в мире прочнейших материалов? Как ведет себя микроскопическая трещинка, откуда у нее такая сила и такое коварство? Как человек учится управлять этой страшной силой и обращать ее себе на пользу? На эти и многие другие вопросы отвечает автор. Непринужденная форма изложения, поэтические примеры, подтверждающие мысль автора, делают книгу интересной и познавательной. Книга предназначена для широкого круга читателей, для всех, кто хочет постичь одну из великих загадок природы. И прежде всего она адресована молодежи, стоящей перед выбором профессии.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
удобно для этого воспользоваться, например, взрывающейся проволочкой, окружающей образец кольцом. И образец, и проводник находятся в баке с водой. Под действием мощного электрического импульса проводник взрывается и окружает образец полем сжатия под давлением примерно в 100 МПа. Этого достаточно для разрушения плексигласа, но, к сожалению, не металла.
Более «экзотична» ломка металла, достигаемая в результате обжатия его мощным магнитным полем. Оно создается одновитковым соленоидом с полем, достигающим 700 кЭ. При этом в металле развиваются разрывающие напряжения в 0,8 ГПа.
Этот метод не нуждается в уплотнениях. Более того, с его помощью, повышая энергию конденсаторов, можно, в принципе, ломать любые металлы.
Но (как видите и здесь без «но» дело не обходится) метод этот не годится для массового производства из-за своей опасности и чисто технических неудобств работы с высокими электрическими напряжениями. Скорее это метод будущего.
Если же подвести итоги, то складывается впечатление, что оба метода все же чрезвычайно перспективны и надежны для стабилизации разрушения. Правда, они пригодны для сравнительно простых конфигураций проката в условиях прямолинейно растущей трещины.
Вероятно, читатель знаком с практикой стрельбы по танкам времен второй мировой войны – не снарядами, а сплошными металлическими болванками. При этом поражение было очень своеобразным. Болванка лобовую броню не пробивала, но вырывала металл из внутренней ее поверхности и швыряла его внутрь танка. Механизм этого процесса был следующим. Когда снаряд попадал в броню, он создавал в ней волну сжатия. Волна эта распространялась до второй поверхности и, отражаясь от нее, превращалась в волну растяжения. Грубо говоря, волна как бы отталкивалась от поверхности, заставляя ее двигаться внутрь кабины. При этом как раз и отрывался металл, поражавший экипаж. Группа исследователей (Ю. И. Головин, В. М. Умрихин, Г. Б. Родюков и автор этой книги) решили использовать этот принцип откола для резки металла
Для этого на стальной пруток длиной в несколько метров наносились концентраторы напряжений (столь громко названное – концентратор напряжений – на са-
мом деле представляло собой насечку простым зубилом). Затем на торец проката обрушивали короткий продольный удар. Это делается многими методами. Например, можно стрелять стальным бойком со скоростью полета до 70-100 м/с; можно разогнать боек магнитным полем. Возможны и другие варианты. Не важно, чем создана волна сжатия. Существенно то, что волна такого рода, как правило, быстро становится плоской. Это означает, что ее фронт по всему сечению проката ортогонален к его поверхности. Таков же и фронт волны растяжения. Поэтому возникающая на поверхности металла трещина распространяется точно перпендикулярно длине прутка, поверхность разрушения оказывается превосходной. При этом бегущая по образцу волна растяжения рвет металл по каждому концентратору. В итоге за один удар многометровый пруток оказывается разделенным на десяток заготовок.
В ПЫЛЬ ЕГО..!
Оно весь мир отдаст, смеясь, на разрушенье
Читатель, конечно же, знает одно из не слишком уж благородных, но основных правил самбо и дзюдо-падающего толкни! Если разрушение и его холодный и безразличный босс – второе начало термодинамики – так уж тяготеют к ломке, почему бы не продолжить их движение и не приложить его к тем случаям нашей жизни, где разрушение нам полезно. А полезно оно не редко. Огромный металлургический завод выплавляет сталь не только из руды. Со всей страны к нему тянутся эшелоны, на открытых платформах которых громоздятся горы старого металла. И вот весь этот (как говорят металлурги) скрап направляется в специальный цех, где его сортируют, а самые крупные компоненты ломают. Иной раз для охрупчивания сталей их подвергают охлаждению жидким азотом. Безжалостно поступают с легковыми автомашинами, «вышедшими в тираж». Мощными прессами их превращают в лепешки, идущие прямо в металлургические цеха. Вот вам и разрушение, вот вам и зло!
Но если это так, то стоит внимательно оглянуться и посмотреть на те удивительные задачи, которые стоят перед человечеством. Тогда выяснится такое изобилие областей, где торжествующее демоническое зло разрушения может оказаться полезным, что разбегаются глаза… Для множества отраслей промышленности совершенно необходимы порошки. Это и горнорудная, и цементная, и стекольная, и пищевая, и химическая. Без порошков не может обойтись фармацевтика, необходимы они при производстве металлокерамики, твердых топ-лив для реактивных двигателей, ядерных тепловыделяющих элементов, бумаги, наконец.
Существует несколько принципиально различных путей разрушения материалов в порошок. Прежде всего – посредством механического воздействия или дробления путем влияния на материал жидкости или газа, ультразвуковых, ударных или электромагнитных волн. Однако чаще всего порошок получают все же на механических мельницах, в которых дробление осуществляется созданием в разрушаемых телах критических напряжений чисто механическим нагружением, например, посредством движения стальных или чугунных шаров, стержней. «Стирают в порошок» в вибрационных и планетарных мельницах и во многих других. Конечно, это удивительно – для самых современных промышленных областей дробление материалов осуществляется методами столь же старомодными, по словам Г. Поженяна, «как ботфорт на палубе ракетоносца». Справедливости ради, однако, следует заметить, что существуют и интереснейшие современные методы фрагментирования. Например, струйные мельницы, в которых элементарные акты дезинтеграции осуществляются при ударе частиц, разогнанных струями газа, о плиту из прочного материала. Почти совсем так, как когда-то описал Байрон
Этот вариант был необычно использован, когда отражающая пластина – наковальня была заменена отбойной плитой из резины. При этом летящий поток тел, предназначенных для дробления, встречал отраженные от резины авангардные частицы. Происходило дробление во встречных потоках, позволившее получать пыль с размером частиц порядка микрона. Разработаны спо-
собы измельчения твердых тел под действием гидростатического давления. При этом измельчаемый материал помещают в эластичную оболочку и подвергают действию гидростатического давления.
Обратимся к одному параметру, по которому в по--следние годы (но не в последнюю очередь!) судят о техническом развитии и культурном уровне страны. Речь идет о производстве бумаги, требующем мощного и современного оборудования, больших энергозатрат, точной регулирующей аппаратуры.
Для производства бумажной массы целлюлозу механически обрабатывают в специальных мельницах. При этом происходит фибрилляция – расщепление пучка волокон на отдельные волокна – фибриллы. Оказывается, чем лучше разделены волокна и чем меньше они изрублены, тем прочнее, эластичнее, однородней бумага. Размер волокон должен быть в пределах от 0,8 до 1,2 мм. Именно такого рода волокна получали из хвойной древесины, у которой изначально они имели длину около 3 мм. Древесина лиственных пород (осина, тополь, береза) в обычных мельницах обрабатываться не может, так как длина их волокон всего лишь 1-1,5 мм, и дальнейшая рубка волокон не позволяет получать качественную бумагу.
В Сибирском технологическом институте разработали мельницу, в которой это обстоятельство учли, и разрушение волокон уменьшилось. Достигается это следующим образом. Смесь волокнистого вещества с водой подается под давлением в параллельно расположенные щелевые сопла. При этом суспензия сжимается. Когда же она выдавливается из сопла и попадает в зону внезапного расширения, происходит явление, известное под названием кавитация. Суть его заключается в образовании в расширяющейся жидкости множества пузырьков воздуха. Жидкость неспособна выдерживать действие больших растягивающих напряжений и разрушается, как бы закипает. При этом развиваются серьезные давления. Чтобы читателю стало понятно, насколько это серьезно, скажу, что этот процесс – одна из основных причин разрушения винтов на кораблях. Каждый акт вскрытия и захлопывания полости играет роль микроскопического молота, вырывающего из винта крохотную частицу металла. А поскольку этот процесс постоянно воспроизводится, он приводит к появлению на