Радиоэлектроника-с компьютером и паяльником
Радиоэлектроника-с компьютером и паяльником читать книгу онлайн
Книга является практическим введением в изучение начал радиоэлектроники с помощью компьютера и самостоятельного технического творчества. В популярной форме рассказывается о радиоэлектронике, поясняется смысл используемых понятий и явлений, приводятся занимательные эпизоды из истории изобретений и открытий. Основу практической части составляют описания простейших и в тоже время интересных и полезных самоделок из электронных наборов Мастер КИТ. Даются подробные советы по их сборке, наладке и применению в быту. Параллельно принципы действия рассматриваемых устройств раскрываются путем моделирования их схем на компьютере в простой программе игрового типа — Electronics Workbench.
Для широкого круга читателей, которые хотели бы подружиться с радиоэлектроникой, сев за компьютер и взяв в руки паяльник.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Рис. 70. АЧХ и ФЧХ последовательного колебательного контура в EWB
В верхней части панели Analysis Graphs имеется набор инструментов для редактирования полученных графиков.
«Пересоединив» катушку и конденсатор, получим параллельный контур (рис. 71).
Рис. 71. Модель параллельного колебательного контура в EWB
Дадим команды на моделирование, аналогично предыдущему случаю, и получим АЧХ и ФЧХ (рис. 72), обратные предыдущим.
Рис. 72. АЧХ и ФЧХ параллельного колебательного контура в EWB
По АЧХ не трудно определить собственную (резонансную) частоту и добротность контура; изменяя параметры элементов контура, можно проследить за изменениями этих характеристик.
Моделирование контура радиоприемника Мастер КИТ NK105
Радиоприемник работает в диапазонах длинных, средних или коротких волн с хорошим качеством звучания и выходной мощностью до 1 Вт. Напряжение питания устройства 9 В. Размеры печатной платы: 38x32 мм. Внешний вид радиоприемника показан на рис. 73. Принципиальная электрическая схема радиоприемника показана на рис. 74.
Рис. 73. Внешний вид радиоприемника Мастер КИТ NK105
Рис. 74. Принципиальная схема радиоприемника Мастер КИТ NK105
Это детекторный радиоприемник прямого усиления сигналов с AM. Нас в нем интересует сейчас входной контур, образованный катушкой на ферритовом стержне с индуктивностью L и конденсатором С2 = 120 pF.
Конденсатор С1 = 1.5 nF служит для емкостной связи с внешней антенной.
Антенна (см. рис. 73) представляет собой ферритовый стержень (диаметром 10x60 мм), на котором размещается подвижная бумажная гильза с контурной катушкой. В зависимости от выбранного диапазона катушка имеет следующее число витков: 10 для КВ, 64 — СВ и 110 — ДВ. Приемник в простейшем варианте является однодиапазонным и однопрограммным.
Настройка на конкретную станцию осуществляется по максимальной громкости приема поворотами антенны в горизонтальной плоскости и перемещениями катушки вдоль стержня. После получения приемлемого результата катушка фиксируется скотчем. Впоследствии приемник может быть доработан введением регулировочного конденсатора и переключателя диапазонов.
Виртуальная модель исследования входного контура в программе EWB показана на рис. 75, а.
Рис. 75. Модель исследования входного контура радиоприемника Мастер КИТ NK105 в программе EWB:
а — схема; б — АЧХ
В схеме, прилагаемой к набору, параметр L не известен. Для его определения есть несколько вариантов. Можно рассчитать индуктивность предварительно зная число витков, геометрические размеры и магнитную проницаемость стержня или по формуле Томсона, задавшись частотой и зная емкость С2. Экспериментально можно определить индуктивность следующим образом. Параллельно ей включается предварительно отградуированный конденсатор переменной емкости C = var. Берется другой радиоприемник, работающий на внешнюю антенну, и точно настраивается на определенную радиостанцию. После этого между антенной и работающим радиоприемником включается контур LC. Варьируя емкость С этого контура, добиваются минимального звучания принимаемой радиостанции. Поскольку АЧХ исследуемого контура будет аналогична ранее приведенной на рис. 72, т. е. он будет работать как фильтр-пробка, то дальнейшим расчетом нетрудно определить искомую индуктивность.
Проведение этих «увлекательных» процедур оставим пытливым читателям. Мы же выберем для моделирования настройку на радиостанцию «Маяк» в СВ-диапазоне, соответственно 546,4 м или 549 кГц. По этой частоте и емкости С2 прикидываем, что величина индуктивности составит порядка 0,7 мГн. Поэтому в виртуальной модели выбираем регулируемую индуктивность с запасом — 1 мГн. Дополнительный резистор R1 позволяет в этой схеме включения выявить резонансную частоту контура. Полученный результат показан на рис. 75, б.
Два Робинзона
…Нам, советским читателям, многое чуждо в Робинзоне. Был он купцом, и, как все купцы, заботился о собственной выгоде.
Первый Робинзон — отчаянный радиолюбитель, а не купец — попал на необитаемый остров и у него случайно (как рояль в кустах) оказались головные телефоны от плеера, какой-то диод да моток провода. Пошарив вокруг, Робинзон наткнулся на крупную картофелину. Из кармана он извлек перочинный нож и пачку сигарет (запрет Минздрава на острове не действовал). Картофелину можно бы съесть, но жить без радио, не зная прогноза погоды, последних известий и результатов чемпионата… Робинзон вспомнил, что в книге С. А. Шабалина видел простейший радиоприемник из картофелины (рис. 76).
Рис. 76. Радиоприемник из картофелины
Он разрезал картофелину пополам, оторвал от сигарет целлофановую пленку Ц и вставил ее между половинками. Затем шнурком Ш от ботинок связал картофелину. Воткнул в нее диод Д из проволоки сделал антенну А, затем заземление 3. Приспособил телефоны Тлф, и вот, что-то зашипело и заговорило. Забросил антенну повыше, заземление воткнул в песок, омываемый водой, так как радиатора парового отопления рядом не оказалось. Попытался поменять положения контактов, удовлетворил свое любопытство и заснул, а когда проснулся, картофелины не нашел.
Попробуем смоделировать этот «картофельный радиоприемник». В программе EWB соберем схему из двухполюсных элементов с сосредоточенными постоянными. Прямо скажем, что это задача не из легких и, очевидно, не имеет однозначного решения.
Потому сделаем некоторую простейшую прикидку, глядя на рис. 76 и заменяя показанные там элементы реальной цепи их простейшими моделями.
Радиостанцию (Radio Transmitter), которую собирается «поймать» Робинзон, смоделируем специальным амплитудномодулированным источником AM Source со следующими характеристиками: частота несущей взята условно — 200 кГц; частота модуляции — 500 Гц; глубина модуляции — 100 %; напряжение, развиваемое на антенне, — 100 мВ (все цифры взяты условно для удобства моделирования). Задавшись примерными параметрами устройства, получим схему, представленную на рис. 77.
Рис. 77. Модель радиоприемника из картофелины в EWB