-->

КВ-приемник мирового уровня? Это очень просто!

На нашем литературном портале можно бесплатно читать книгу КВ-приемник мирового уровня? Это очень просто!, Кульский Александр-- . Жанр: Технические науки. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
КВ-приемник мирового уровня? Это очень просто!
Название: КВ-приемник мирового уровня? Это очень просто!
Дата добавления: 16 январь 2020
Количество просмотров: 281
Читать онлайн

КВ-приемник мирового уровня? Это очень просто! читать книгу онлайн

КВ-приемник мирового уровня? Это очень просто! - читать бесплатно онлайн , автор Кульский Александр

… С чего начать будущему электронщику, какое направление выбрать? Компьютеры, телевизоры, видики?… Но, учитывая их колоссальную сложность и специфику — это задача сомнительная! Правда, можно «лепить» целые системы из готовых компьютерных плат. Но где же тут особое творчество?

Да и микросхемы большого уровня интеграции, поверьте, мало чем могут помочь для развития у радиолюбителя умения «читать» любые схемы… Необходима такая область, такое направление электроники, которое, обеспечивая накопления бесценного опыта в конструировании, имело бы и самостоятельную ценность.

Такая область существует — это создание высокочувствительных (как коротковолновых, так и всеволновых) приемников, основанных на современной профессиональной идеологии создания подобной аппаратуры.

От азов электроники и радиотехники — к современному высокочувствительному супергетеродинному приемнику с двойным преобразованием частот и верхней первой ПЧ… Оснащенному высокоэффективной цифровой шкалой настройки — вот о чем эта книга! Те, кто хочет самостоятельно изготовить и отладить приемник мирового уровня — эта книга для вас!

 

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 27 28 29 30 31 32 33 34 35 ... 84 ВПЕРЕД
Перейти на страницу:

«Н»: А почему исключили?

«С»: По единственной причине — они не будут применены в схеме нашего приемника! Но, друзья мои, осталось еще несколько разновидностей диодов, которые мы рассмотрим при нашей следующей встрече. И без которых мы действительно не сможем обойтись!

Глава 12. Полупроводниковые диоды — немного истории…

«Аматор»: Я вот тут смотрел кое-какую литературу и нашел упоминание о диодах — СТАБИЛИЗАТОРАХ ТОКА! Может ли такое быть?

«Спец»: Вполне, вполне. Хотя… никакие известные диоды, насколько мне известно, подобными качествами не обладают!

«Незнайкин»: Ничего себе ситуация!.. Противоречие какое-то получается.

«С»: Ровным счетом никакого! Диоды действительно не могут стабилизировать ток! Но… сложное полупроводниковое устройство, в состав которого входят как диоды, так и транзисторы, а также и еще кое-какие компоненты (мы к этому вопросу еще вернемся) могут великолепно справляться с этой задачей. А-поскольку это устройство вполне может иметь только ДВА вывода, то простоты ради оно и получило наименование — ДИОД — СТАБИЛИЗАТОР тока!

«Н»: А может лучше о нем сразу рассказать?

«С»: Обязательно, но несколько позже… А сейчас я хотел бы сообщить вам об очень важных для нас диодах, в физической основе действия которых НЕ ЛЕЖИТ вообще р — n-переход! Это диод, основанный на переходе типа МЕТАЛЛ — ПОЛУПРОВОДНИК. Который также обладает выпрямительным эффектом. Эти приборы называют обыкновенно по имени, в честь исследователя, работы которого и подарили их электронике — ДИОДЫ ШОТТКИ.

«А»: Я читал о них! Они характеризуются очень малым временем переключения и очень низкой величиной накопленного заряда!

«С»: Совершенно верно! Добавлю только, что хотя в их основе тоже лежит кремний, но у них весьма мало прямое падение напряжения по сравнению с обычными кремниевыми диодами. Оно составляет около 0,3 В.

«Н»: А у обычных сколько?

«А»: Между 0,6 и 0,7 вольта…

«С»: У них масса и других достоинств. Например, очень малые шумы и ничтожные (сравнительно с любыми другими типами диодов) емкости! Что в сумме делает диоды Шоттки наиболее предпочтительными для создания ВЫСОКОКАЧЕСТВЕННЫХ ВЫСОКОЧАСТОТНЫХ ДИОДНЫХ СМЕСИТЕЛЕЙ.

Существует и еще один класс диодов, которые дали очень много как схемотехнике, так и дизайну приборостроения…

«А»: Речь идет о СВЕТОДИОДАХ?

«С»: Именно о них! Обратите внимание, что светодиоды изготовляются не путем использования германия или кремния, о которых мы уже говорили ранее. А на основе СЛОЖНЫХ полупроводников. Например, на основе арсенида — фосфида галлия (имеющего валентную связь типа А3В5).

Или, скажем, карбида кремния. Или арсенид — галлий — алюминия и прочие. Эти диоды излучают световые кванты при протекании через них прямого тока. Область спектрального излучения этих диодов имеет довольно узкие границы. При этом яркость свечения в широком диапазоне пропорциональна величине прямого тока светодиода!

«Н»: Так они могут заменить маленькую электрическую лампочку?

«С»: Новейшие светодиоды, получившие наименование «сверхярких», действительно, можно использовать в качестве подсветки, если тебя не будет шокировать их кроваво-красный свет! Но, в отличие от лампочки, нить накаливания которой нагрета до 2000 °C, излучающая свет область кристалла имеет температуру не выше 50 °C! И, что важно, не обладает тепловой инерцией!

Вот почему излучение светодиода очень легко модулировать. А, следовательно, одно из основных применений светодиода — это не столько элементарная подсветка, сколько передача информации в световом диапазоне. Токи для этого нужны совершенно пустячные! Например, новейшие японские, американские и голландские светодиоды великолепно светятся уже при токе 2–3 мА!

«А»: Для отчетливой индикации этого вполне достаточно! Но ведь на основе светодиодов изготовляются еще и цифровые индикаторы?

«С»: Да, но о них мы будем говорить позднее, когда вплотную займемся ЦОУ для приемника. Но, всем вышеперечисленным, возможности светодиодов опять-таки не ограничиваются! Что бы вы сказали, если мы попробуем применить светодиод в качестве… стабилитрона?

«Н»: Но ведь стабилитронов различных типов, как успел сообщить мне Аматор, хоть пруд пруди! Так зачем же?…

Что может дать особо нового использование для этой цели светодиодов?

«С»: А вот тут, Незнайкин, ты глубоко неправ! С точки зрения экономики это вообще одно и то же. А вот с точки зрения электроники…

«А»: Знаете, Спец, я тоже еще как-то не очень врубаюсь в ситуацию!

«С»: Это поправимо… Мы уже говорили, что стабилитроны, реально, используются для получения опорных напряжений не ниже 3,3 вольта. Более низкие напряжения стабилизации достигаются только последовательным включением обычных диодов в прямом направлении. Но их суммарное дифференциальное сопротивление при этом становится слишком большим. Обратимся к рисунку. На нем изображены ВАХ для различных случаев прямого включения диодов (см. рис. 12.1).

КВ-приемник мирового уровня? Это очень просто! - _75.jpg

Так кривая 1 — это ВАХ одного кремниевого диода. Кривая 2 — соответствует случаю прямого включения ДВУХ диодов. Обратите внимание на увеличение степени наклона! А теперь сравните кривые 1 и 2 с кривой 3, характеризующую ВАХ светодиода красного свечения.

«А»: Но я вообще не наблюдаю наклона характеристики кривой 3?! В то же время величина напряжения стабилизации составляет всего 1,6 вольта!

«С»: Насчет наклона ВАХ ты совершенно прав! Его, практически, вообще нет. Дифференциальное сопротивление светодиода не превышает ДОЛЕЙ ОМА! Кстати, в зависимости от длины волны излучения, напряжение стабилизации варьируется от 1,4 вольта (инфракрасный) до 2,4 вольта (зеленый).

«А»: Но имеются еще и такие приборы, как ФОТОДИОДЫ. Рассмотрим ли мы их?

«С»: Я сам сейчас думаю над этим вопросом. С одной стороны, если затронуть тему фотодиодов, нам придется уделить ей большое внимание. С другой — их использование в радиоприемнике в настоящий момент не предполагается. А мы не имеем возможности в наших беседах рассказать обо всей современной электронике. Причем сразу! Согласись, Аматор, что вот не затрагиваем же мы здесь тему о свойствах полупроводниковых лазеров, например…

«А»: Справедливо. В общем, если паче чаяния фотодиоды нам все же понадобятся, никто нам не помешает вернуться к ним…

«С»: Ну что же… На том и порешим!

«Н»: Значит, можно считать, что общее краткое знакомство с диодами мы закончили?

«С»: Да, пожалуй. Осталось только положить здесь начало своего рода справочнику, о необходимости которого мы упоминали выше!

«А»: Нет проблем! Беру бумагу и ручку. Дорогой Спец, я весь внимание. Уже пишу!..

«С»: Как вы любезны!.. В таком случае — уже диктую!.. (см. Глава 30., табл. 30.2)

«А»: Ну вот, начало справочнику положено!

«С»: Всё это великолепно! Ну а теперь нас ждет знакомство с транзисторами… Итак, транзистор — это полупроводниковый элемент с тремя электродами, который служит для усиления или переключения сигналов.

Интересна их история. В то самое время как приёмно-усилительная лампа (ПУЛ) победно шествовала по всему свету, наиболее философски мыслящие умы усиленно искали ей замену. Они мечтали о приборчике экономичном, малогабаритном, очень надежном, не требующем для своей работы высоких напряжений. Бум, который произвел в техническом мире приемник — кристадин российского инженера Лосева (снабженный твердотельным диодом — усилителем) вскоре сошел на нет. Ни участок ВАХ кристалла, примененного Лосевым, имевший ОТРИЦАТЕЛЬНОЕ СОПРОТИВЛЕНИЕ; ни второе удивительное свойство того же кристалла — таинственное (как на то время) свечение при работе — не имели под собой никакого научного объяснения. А сам прибор — необходимой стабильности и постоянства действия.

1 ... 27 28 29 30 31 32 33 34 35 ... 84 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название