История электротехники
История электротехники читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Разработка прецизионных источников ЭДС, резисторов и делителей напряжения позволила приступить с начала XX в. к выпуску в качестве самостоятельных изделий компенсаторов постоянного тока, которые стали широко использоваться для поверки вольтметров, амперметров и ваттметров, а также для измерений ЭДС, токов, сопротивлений и функционально связанных с ними неэлектрических величин. Компенсаторы переменного тока с вибрационными гальванометрами в качестве нуль-индикаторов появились в 20-е годы XX в.
В те же годы начали выпускаться мосты постоянного и переменного тока для точного измерения параметров электрических цепей. Позже идеи компенсационного метода измерения напряжения, а также мостовые схемы легли в основу создания ряда аналоговых и цифровых приборов с автоматическим уравновешиванием.
Первые измерительные трансформаторы, появившиеся в самом начале XX в., удовлетворяли весьма скромным техническим требованиям и должны были градуироваться вместе с соответствующими приборами на рабочей частоте. Однако уже в 20-е годы это были вполне современные средства измерений разнообразных конструкций. Трансформаторы тока изготавливались на токи до 50 кА при рабочем напряжении до 250 кВ; трансформаторы напряжения выпускались на напряжения до 100 кВ.
С конца XIX в. началось бурное развитие самопишущих приборов, предназначенных для измерения и записи медленно изменяющихся величин: тока, напряжения, мощности, частоты, угла сдвига фаз, а также неэлектрических величин: температуры, давления и др. Первые самопишущие приборы использовали магнитоэлектрический измерительный механизм. Однако вскоре в них стали применяться, кроме того, ферродинамические, индукционные и электромагнитные механизмы, а также компенсационные и мостовые измерительные схемы.
В 20-е годы самопишущие приборы в конструктивном отношении были доведены до высокой степени совершенства. Например, при записи пером и чернилами использовались капиллярные перья с отверстием 0,07 мм, позволяющие при расходе 0,5 г чернил сделать линию длиной 300 м. Использовалась также точечная регистрация с помощью цветных лент (до шести различных красящих лент в многоканальных приборах). Применялись также искровые, световые и другие способы записи. Чаще всего запись осуществлялась на протягиваемую перфорированную бумажную ленту с полезной шириной от 60 до 250 мм.
В многоканальных самопишущих приборах использовалось либо несколько измерительных механизмов, либо один механизм с механическим коммутатором каналов; применялась также комбинация этих способов. Например, фирма «Гартман и Браун» выпускала прибор с двумя стоящими рядом измерительными механизмами, который писал 12 точечных кривых.
Та же фирма выпускала мультитермограф — прибор для записи температур в нескольких местах (рис. 12.3). Этот прибор был шестиканальным, в нем использовалось шесть различных цветных красящих лент. Одновременно с переключением красящих лент происходило переключение подвижной катушки магнитоэлектрического механизма на очередное измерительное устройство. В приборе использовалась точечная запись. Все шесть каналов опрашивались циклически за 108 с (18 с на канал).
В большинстве случаев продвижение бумаги в самописцах осуществлялось равномерно. Однако получили распространение и другие способы регистрации. Так в некоторых самопишущих максимальных ваттметрах — приборах, предназначенных для регистрации суточных колебаний в потреблении электроэнергии, — бумага продвигалась пропорционально активной мощности, а стрелка — пропорционально реактивной, так что за каждый период записи вычерчивался прямоугольный треугольник, гипотенуза которого пропорциональна полной мощности.
Самопишущие приборы с автоматической компенсацией — мосты и потенциометры — одной из первых начала выпускать фирма «Лидс и Нортруп» (США). Вместо электронного усилителя, применяемого в современных приборах этого типа, в них использовался гальванометр, с помощью которого могли замыкаться контакты в обмотках любого из двух реле («минимального» и «максимального»). При срабатывании реле приводился в действие часовой механизм, с помощью которого схема уравновешивалась, при этом стрелка гальванометра отклонялась от контакта в среднее положение. Конструкция прибора обеспечивала практическое отсутствие нагрузки на подвижную часть гальванометра.
В подобных приборах достигалась весьма высокая чувствительность. Автоматические потенциометры, например, выпускались на напряжение полного отклонения I мВ. Количество каналов от 1 до 16; быстродействие 1 мин на канал; основная приведенная погрешность не превышала 0,5%.
Одним из недостатков первых самопишущих приборов было использование для протягивания бумажной ленты механических часов, которые создавали небольшой вращающий момент и требовали периодического завода (обычно на 8–30 сут). Однако уже с конца 10-х годов XX в. в США для этой цели начали применять синхронный микродвигатель X. Уоррена. Этот двигатель при малых габаритах (его ротор в виде железного диска с намагниченными стальными иглами весил всего 1 г) и потребляемой мощности всего 3 Вт создавал вращающий момент почти в 1000 раз больше, чем у часов с заводом на 8 сут.
Применение электрических двигателей, а затем начиная с 30-х годов электронных усилителей позволило значительно улучшить технические характеристики самопишущих приборов и повысить их надежность.
По мере роста протяженности электрических сетей все больше и больше выступала на первый план проблема электрических измерений на расстоянии — телеизмерений. Весьма часто энергия дальних источников была значительно дешевле, чем местных, поэтому местные станции использовались только для покрытия пиков нагрузки. Для экономичного распределения мощности между электростанциями и потребителями электроэнергии необходимо иметь центральный пункт управления, находясь в котором, можно было знать о напряжении и мощности на каждом объекте, производящем или потребляющем электроэнергию.
С начала XX в. подобные диспетчерские пункты начали строиться в США, а затем и в Европе. Для обеспечения быстрой реакции на аварийные ситуации предпочтение отдавалось непрерывным измерениям на расстоянии с одновременной их записью. До 30-х годов показания электроизмерительных приборов передавались почти исключительно по проводам; проблема беспроволочной передачи хотя и ставилась, но не получила еще практического осуществления.
В первых телеизмерительных устройствах передача измерительной информации осуществлялась с помощью вспомогательного источника постоянного тока. Последовательно включались источник напряжения, реостат, линия связи и выходной прибор магнитоэлектрической системы. Оператор наблюдал за показаниями прибора и перемещал движок реостата вдоль шкалы, градуированной в единицах измеряемой величины. При этом соответственно изменялся ток в выходном приборе, находящемся на приемной стороне и градуированном в тех же единицах. Данный метод нетрудно было автоматизировать, связав механически подвижную часть прибора на передающей стороне с движком реостата. Подобные приборы выпускала, например, фирма «Сименс и Гальске».
Аналогичная идея использовалась для суммирования показаний кило ваттметров. Каждому прибору соответствовал свой реостат; все реостаты включались последовательно с источником напряжения и задавали ток в выходной прибор, находящийся на расстоянии до 300 км.
Для телеизмерений на переменном токе использовались преобразователи переменного тока в постоянный, расположенные на передающей стороне. При этом передача велась постоянным током. Так, для измерения переменного тока в телеизмерительном устройстве Кембриджской компании вторичная обмотка трансформатора тока замыкалась на нагреватель термопреобразователя. Постоянный ток, пропорциональный термоЭДС, использовался для передачи. Для телеизмерений мощности использовались два термопреобразователя, включенных по схеме, реализующей суммарно-разностный метод. Из-за малости термоЭДС (десятки милливольт) информация могла передаваться лишь на небольшие расстояния (до 20 км).