-->

История электротехники

На нашем литературном портале можно бесплатно читать книгу История электротехники, Коллектив авторов-- . Жанр: Технические науки. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
История электротехники
Название: История электротехники
Дата добавления: 15 январь 2020
Количество просмотров: 305
Читать онлайн

История электротехники читать книгу онлайн

История электротехники - читать бесплатно онлайн , автор Коллектив авторов
Книга посвящена истории электротехнической науки и промышленности как в нашей стране, так и за рубежом. В ней рассмотрены все основные этапы развития электротехники, начиная с ее зарождения и до наших дней. Показана роль отечественных и зарубежных ученых, внесших наибольший вклад в развитие электротехники. Подробно и конкретно рассмотрены основные достижения различных отраслей электротехники: электроэнергетики; электромеханики; электротехнологии; электрического транспорта; светотехники; электрических материалов и кабелей; промышленной электроники и электроизмерительной техники. В главе «Персоналии» приведены краткие биографические сведения о крупнейших отечественных и зарубежных ученых и специалистах в области электротехники.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

С начала XX в. начали серийно выпускаться щитовые магнитоэлектрические приборы разнообразных конструкций: квадрантные, секторные, трубчатые, плоскопрофильные, выпукло-профильные (рис. 12.1); позже были разработаны миниатюрные приборы с внутрирамочным магнитом. Щитовые приборы нашли широкое применение для создания пультов управления распределением электроэнергии (рис. 12.2).

На основе магнитоэлектрических измерительных механизмов были созданы не только приборы для регистрации медленно изменяющихся величин (токов, напряжений, температур и т.д.), но и светолучевые (шлейфовые) осциллографы с частотным диапазоном от 0 до 10 кГц. В последних использовались миниатюрные осциллографические гальванометры с высокой частотой собственных колебаний подвижной части.

Светолучевые осциллографы появились в 20-х годах XX в. Для развертки изображения, проектируемого на матовый экран, в них использовался вращающийся зеркальный барабан; была также предусмотрена возможность записи на фотобумагу. В отличие от более поздних моделей в качестве источника света применялись мощные дуговые лампы или мощные лампы накаливания, автоматически перегружаемые в момент съемки; для создания магнитного поля использовался электромагнит.

История электротехники - i_174.png
Рис. 12.1. Профильные щитовые приборы
а — выпуклопрофильный прибор; б — выпуклопрофильнмй прибор с плоским стеклом; в — плоскопрофильный прибор утопленного типа; г — выпуклопрофильный прибор выступающего типа
История электротехники - i_175.jpg
Рис. 12.2. Пульт управления распределением электроэнергии с плоскопрофильными приборами фирмы «Сименс и Гальске» (20-е годы XX в.) 

Первые светолучевые осциллографы были очень громоздкими и дорогими. Так, например, шестишлейфовый осциллограф Сименс — Блон-деля был выполнен в виде трех блоков, смонтированных на металлической стойке; дуговая лампа потребляла ток 8 А от источника постоянного напряжения 220 В. Первый переносный осциллограф фирмы «Вестингауз» (США, 1923 г.) весил 50 кг и стоил 6000 дол.

Светолучевые осциллографы использовались в течение примерно 50 лет. Во второй половине XX в. они были постепенно вытеснены электронными осциллографами и компьютерными средствами измерений.

Жизнь магнитоэлектрических приборов была существенно продлена в связи с разработкой измерительных преобразователей различных электрических и неэлектрических величин в постоянное напряжение или ток. На их основе разработаны многочисленные средства измерений, в которых данные приборы использовались в качестве выходных.

Например, с начала XX в. начали применяться термоэлектрические приборы на базе термопреобразователей, позволявшие измерять переменные токи и напряжения. Эти приборы, работающие в частотном диапазоне 0–50 МГц, широко использовались и во второй половине века. В середине века появились выпрямительные преобразователи, на основе которых были созданы универсальные приборы для измерений постоянных и переменных напряжений и токов, а также сопротивлений — так называемые «тестеры» — одни из самых распространенных средств измерений. Нельзя не отметить также использование магнитоэлектрических приборов в качестве выходных в аналоговых электронных средствах измерений — вольтметрах, омметрах, фазометрах, веберметрах и т.д.

Первым средством измерений, позволявшим производить измерения как на постоянном, так и на переменном токе, был тепловой электроизмерительный прибор, который сконструировал в 1837 г. швейцарский физик Огюст де ла Рив. В нем использовался эффект удлинения проволоки при нагревании ее током.

В 1886 г. во Франции был построен первый технический тепловой прибор со стрелкой — амперметр Кардью. В нем использовалась проволока из сплава платины и серебра длиной около 3 м и диаметром 0,06 мм, которая располагалась в длинной трубе — насадке на круглом приборе. В дальнейшем конструкция таких приборов была усовершенствована. Например, в тепловом приборе германской фирмы «Гартман и Браун» была использована платинородиевая проволока длиной всего 17 см, что позволило резко уменьшить его габариты.

Тепловые приборы широко применялись в первой трети XX в. в качестве амперметров, вольтметров и ваттметров в частотном диапазоне от 0 до 3 МГц. Затем они были вытеснены из области низких частот другими, более простыми, точными и надежными электромеханическими приборами, а из области высоких частот — термоэлектрическими.

В конце XIX в. в связи с необходимостью измерений высоких напряжений вернулись к старой идее построения электростатических вольтметров. За основу были взяты квадрантный электрометр и многокамерный вольтметр Кельвина. В начале XX в. были разработаны лабораторные и щитовые электростатические вольтметры с пределами измерений 50 В — 400 кВ. Обычно изоляцией между металлическими пластинами, к которым прикладывалось измеряемое напряжение, служил просто воздух; в качестве материала для крепления использовались фарфоровые или стеклянные изоляторы.

Для точных измерений высоких напряжений были разработаны более сложные конструкции. Например, фирмой «Гартман и Браун» выпускался абсолютный вольтметр на напряжения до 300 кВ. В нем вращающий момент, создаваемый силами электростатического взаимодействия между заряженными пластинами, уравновешивался противодействующим, создаваемым электродинамическим притяжением между двумя катушками, обтекаемыми вспомогательным током. Значение этого тока являлось мерой измеряемого напряжения. Изолирующим веществом служил сжатый азот под давлением 12 ат. Наибольшая приведенная погрешность вольтметра не превышала 0,5%.

Английская Кембриджская компания в 1913 г. разработала электростатический осциллограф, предназначенный для исследования переходных процессов в цепях высокого напряжения. Роль магнитного поля обычного светолучевого осциллографа в нем выполняло электрическое поле, возникающее между неподвижными пластинами при включении исследуемого переменного напряжения. Петля с зеркальцем, помещенная в это поле, состояла из двух изолированных проводников, к которым прикладывалось вспомогательное постоянное напряжение.

Электростатические вольтметры использовались на протяжении всего XX в., однако область их применения даже в технике высоких напряжений постепенно уменьшалась.

Предпосылки для разработки электромагнитных приборов были созданы еще в 1825 г., когда английский ученый В. Стерджен изобрел электромагнит. Одним из первых приборов этого типа был прибор с железной иглой, выпущенный в 1880 г. фирмой «Карпантье» (Франция). В этой конструкции подвижная игла из магнитомягкого железа занимала определенное положение под действием двух магнитных полей, сдвинутых в пространстве на 90°: поля постоянного магнита и поля катушки, создаваемого измеряемым током. При изменении тока изменялось направление результирующего магнитного поля, за которым следовала игла, являвшаяся стрелкой прибора.

В 1881 г. немецкий инженер Ф. Уиппенборн изобрел электромагнитный прибор с эллиптическим сердечником, а в 1884 г. немецкий профессор Ф. Кольрауш (1840–1910 гг.) разработал конструкцию электромагнитного пружинного гальванометра. Примерно в то же время были предложены использовавшиеся в течение последующих 100 лет и ставшие классическими конструкции с круглыми и плоскими катушками, а также сделаны первые попытки применения магнитопроводов для увеличения вращающего момента. Последняя конструкция достигла своего совершенства в 60-х годах XX в., когда на основе электромагнитного механизма с замкнутым магнитопроводом удалось создать дешевые и надежные малогабаритные щитовые приборы с малым собственным потреблением энергии — наиболее распространенные в те годы приборы для измерений в цепях переменного тока промышленной частоты (амперметры, вольтметры, частотомеры).

В конце XIX в. были разработаны также электродинамические приборы — наиболее точные для своего времени средства измерений на переменном токе промышленной частоты. Они стали широко использоваться в качестве образцовых переносных амперметров, вольтметров и, главное, фазометров. Эти приборы обладали важным свойством: после градуировки на постоянном токе они могли использоваться как на постоянном, так и на переменном токе практически без потери точности.

Перейти на страницу:
Комментариев (0)
название