-->

Системы борьбы с необитаемыми аппаратами — асимметричный ответ на угрозы XXI века

На нашем литературном портале можно бесплатно читать книгу Системы борьбы с необитаемыми аппаратами — асимметричный ответ на угрозы XXI века, Красильников Роман Валентинович-- . Жанр: Технические науки / Прочая научная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Системы борьбы с необитаемыми аппаратами — асимметричный ответ на угрозы XXI века
Название: Системы борьбы с необитаемыми аппаратами — асимметричный ответ на угрозы XXI века
Дата добавления: 16 январь 2020
Количество просмотров: 285
Читать онлайн

Системы борьбы с необитаемыми аппаратами — асимметричный ответ на угрозы XXI века читать книгу онлайн

Системы борьбы с необитаемыми аппаратами — асимметричный ответ на угрозы XXI века - читать бесплатно онлайн , автор Красильников Роман Валентинович

Освещаются актуальные в настоящее время вопросы обеспечения национальной безопасности на фоне стремительного развития боевых морских роботов, которое в ближайшем будущем может изменить баланс мировых сил. Автор рассматривает существующие и перспективные образцы необитаемых морских систем разного назначения, приводит анализ возможных асимметричных действий против новой угрозы, а также обозначает ряд возможных технических решений для систем борьбы с необитаемыми морскими аппаратами.

Для специалистов, работающих в области подводных специализированных комплексов и аппаратов, руководителей разных уровней ВМФ России, студентов и аспирантов профильных технических вузов, а также курсантов и адъюнктов военных училищ и академий.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

На эскизе пунктиром показан герметичный колпак 24, обеспечивающий транспортную безопасность устройства.

На рис. 62 изображен разрез магистрали основного клапана и расположенного в ней шарового клапана, на котором обозначены расширительная камера 13, в которой расположена выходная магистраль 15 основного клапана 14, в которой установлен шаровой клапан 16.

Транспортно-пусковой контейнер работает следующим образом.

На базе приготовления через гнездо 22 по каналу 21 в баллон 12 набивается воздух высокого давления. Вследствие разности уплотняемых площадей с приводным поршнем 19 основной клапан 14 будет дополнительно к усилию пружины 20 прижат давлением к седлу, чем обеспечивается надежность герметизации баллона.

Системы борьбы с необитаемыми аппаратами — асимметричный ответ на угрозы XXI века - i_064.png

Рис. 61. Продольный разрез ТПК.

Системы борьбы с необитаемыми аппаратами — асимметричный ответ на угрозы XXI века - i_065.png

Рис. 62. Реализация регулятора расхода воздуха.

После установки транспортно-пускового контейнера на носителе и выхода последнего в море, на глубине подводный аппарат 1 будет находиться в жидкости с добавлением ингибитора под забортным давлением вследствие малой жесткости мембраны 10.

Перед осуществлением пуска подводного аппарата 1 производится его подготовка, в ходе которой в него с помощью не показанного на чертежах устройства вводятся данные от информационно-управляющей системы носителя. В это же время по смежному кабелю, также не показанному на чертежах, на шаговый электродвигатель 17 подается напряжение, вызывающее его вращение, передаваемое на шаровой клапан 16, что приводит к изменению его проходного сечения. При этом угол вращения шарового клапана 16 выбирается информационно-управляющей системой исходя из текущего значения глубины погружения носителя. На минимальной глубине шаровой клапан 16 поворачивается так, что его малое проходное сечение обеспечивает малый расход воздуха из баллона 12, подаваемого в расширительную камеру 13. На максимальной глубине шаровой клапан 16 остается полностью открытым, обеспечивая максимальный расход воздуха.

Осуществление пуска подводного аппарата 1 производится подачей электропитания на привод пневмоклапана 23. Давлением воздуха поршень 19 привода основного клапана 14 перемещает его в открытое положение. Через открытый основной клапан 14 воздух высокого давления из баллона 12 поступает в выходную магистраль 15, а далее, через проходное сечение шарового клапана 16, — в расширительную камеру 13, обеспечивая повышение давления в ней выше забортного. При этом на малой глубине погружения носителя забортное давление мало, и поэтому расход воздуха, необходимый для его преодоления, небольшой. На большой глубине — наоборот. Поршень 3 за счет давления в расширительной камере, перемещается вдоль пусковой трубы и компенсирует потерю воды через обтюрацию, тем самым обеспечивая ускоренное по отношению к нему движение подводного аппарата 1, за счет того, что площадь поршня 3 больше площади калиброванной части подводного аппарата, находящейся на срезе кольца 4 обтюрации.

В процессе перемещения поршня 3 давление воздуха в расширительной камере 13, из-за увеличения ее объема, падает, тем самым уменьшая силу, действующую на поршень 3. При этом на малой глубине это падение давления компенсируется небольшим расходом воздуха, а на большой — существенным. Предварительная установка проходного сечения шарового клапана 16 позволяет регулировать расход воздуха в зависимости от глубины погружения носителя, на которой производится выталкивание подводного аппарата 1.

В конце разгона подводного аппарата 1 поршень 3 тормозится и затем останавливается, так как плунжер 6 сжимает в демпфирующей полости 5 жидкость, постепенно выжимая ее под образующимся повышенным давлением через уменьшающееся с перемещением поршня сечение.

Четвертая конструкция транспортно-пускового контейнера приведена здесь для более подробной иллюстрации возможных технических решений, применяемых для решения задачи обеспечения достаточной стабильности величины выходной скорости НПА на разных глубинах использования ТПК.

Описываемая конструкция отличается дополнительным элементом, входящим в ее состав — гидростатом, отслеживающим изменение давления внешней среды. Наличие в составе системы подачи воздуха на срабатывание устройства гидростата обеспечивает более точную регулировку расходуемого воздуха, создающего силовой импульс, прилагаемый к подводному аппарату в зависимости от глубины, что, с одной стороны, уменьшает избыточную величину выходной скорости на малой глубине, а с другой — позволяет максимально использовать проходное сечение клапана на больших глубинах.

На рис. 63 изображен общий вид рассматриваемой конструкции в разрезе. Общее расположение аппарата в пусковой трубе не отличается от ранее описанных. К пусковой трубе 2 герметично пристыкована включающая баллон 12 дополнительная секция с образованием расширительной полости 13. В торцевой, ограничивающей расширительную полость 13, стенке баллона 12 выполнено резьбовое гнездо, в котором герметично закреплена выходная магистраль 14, оформленная в виде трубы. В выходной магистрали расположено веретено 15, имеющее профильную наружную поверхность с уменьшающимся в сторону баллона поперечным сечением, и жестко закрепленное на торцевой, ограничивающей расширительную полость стенке поршня 3.

В задней части баллона находится резьбовое гнездо, в которое ввернута с обеспечением герметичности соединения клапанная коробка 16, предназначенная для размещения пускового и основного клапанов, устройства наполнения баллона и гидростата 17.

Продольный разрез клапанной коробки представлен на рис. 64, при этом на чертеже не показана втулка регулятора проходного сечения выходной магистрали 14, размещаемая в гнезде 18, герметично закрываемом от внешней среды также не показанной на чертеже крышкой.

Внутри клапанной коробки выполнена полость 19, соединенная с внутренним объемом баллона 12 цилиндрическим каналом 20, воздух в которой находится под давлением, соответствующим давлению во внутренней полости баллона 12. С полостью 19 соединены не показанные на чертеже пусковой клапан и устройство наполнения баллона. Также внутри клапанной коробки выполнена полость 21, герметично отделенная от полости 19 основным клапаном 22 и находящаяся до момента пуска аппарата под атмосферным давлением. Полость 21 связана с выходной магистралью 14 с помощью проходных сечений 23, частично перекрываемых втулкой регулятора проходного сечения выходной магистрали 14. В верхней части основного клапана 22 расположена управляющая полость 24, связанная с полостью, в которой расположен пусковой клапан, внутренним каналом 25.

На рис. 65, изображающем разрез А-А, показано устройство гидростата 17, располагаемого в теле клапанной коробки 16, в которой выполнена внутренняя полость 26. Во внутреннюю полость 26 входит поршень 27 гидростата 17, жестко соединенный с зубчатой рейкой 28, выполненной в виде вала с нарезанными на нем зубьями. Во внутренней полости 26, герметично отделенной от наружной среды прочным сильфоном 29, расположена пружина 30, определяющая начальное положение поршня 27, а также закон его перемещения под действием изменяющегося наружного гидростатического давления. Зубчатая рейка 28 взаимодействует с втулкой 31 регулятора проходного сечения, угловое положение которой относительно проходных сечений 23 определяет их эффективную площадь, через которую в процессе выпуска аппарата проходит воздух.

Устройство выталкивания работает следующим образом.

На базе приготовления в баллон 12 набирается газ (воздух высокого давления), а во внутреннюю полость пусковой трубы 2 — жидкость с добавлением ингибитора.

После подачи устройства на носитель на глубине подводный аппарат 1 будет находиться в жидкости под забортным давлением вследствие малой жесткости мембраны 10. При этом по мере увеличения глубины нахождения носителя будет изменяться гидростатическое давление, действующее на поршень 27 гидростата 17, который, перемещаясь внутрь полости 26 и сжимая пружину 30, будет вызвать перемещение зубчатой рейки 28, которая в свою очередь, будет передавать вращение втулке 31, что приведет к увеличению эффективной площади проходных сечений 23. В случае, если носитель всплывает, поршень 27 под действием пружины 30 и жесткости сильфона движется в обратном направлении, вызывая уменьшение эффективной площади проходных сечений 23.

Перейти на страницу:
Комментариев (0)
название