Системы борьбы с необитаемыми аппаратами — асимметричный ответ на угрозы XXI века
Системы борьбы с необитаемыми аппаратами — асимметричный ответ на угрозы XXI века читать книгу онлайн
Освещаются актуальные в настоящее время вопросы обеспечения национальной безопасности на фоне стремительного развития боевых морских роботов, которое в ближайшем будущем может изменить баланс мировых сил. Автор рассматривает существующие и перспективные образцы необитаемых морских систем разного назначения, приводит анализ возможных асимметричных действий против новой угрозы, а также обозначает ряд возможных технических решений для систем борьбы с необитаемыми морскими аппаратами.
Для специалистов, работающих в области подводных специализированных комплексов и аппаратов, руководителей разных уровней ВМФ России, студентов и аспирантов профильных технических вузов, а также курсантов и адъюнктов военных училищ и академий.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
В случае, если объект действительно представляет опасность для охраняемого объекта, принимается решение на выпуск одного или нескольких подводных аппаратов 9 для его уничтожения или отведения от цели. При этом, количество пусковых установок 8 позволяет хранить на пусковой платформе необитаемые аппараты 9 разного типа действия — от волнового (низкочастотного) воздействия на биологический объект до воздействия ударной волны (гидравлического удара) на техническое устройство.
Для создания выталкивающего необитаемый аппарат 9 импульса, пусковая установка 8 использует электроэнергию аккумулятора (или нескольких аккумуляторов) 7. При этом общая энергия аккумуляторов 7 должна обеспечивать не менее, чем три последовательных срабатывания пусковых установок 8.
В случае, если угроз много, и возникает необходимость в пуске большего количества подводных аппаратов 9, электроэнергия для работы пусковых установок 8 может быть получена непосредственно от охраняемого объекта по кабелю 14.
Следует заметить, что условия целенаправленной борьбы с НПА существенно отличаются от требований, предъявляемых к средствам ПТЗ. Так, частоты гидроакустических средств НПА в десятки раз выше частот, используемых в системах самонаведения торпед. Также качественно различаются и скорости движения подводных аппаратов и торпедного оружия. Кроме этого существует разница в габаритах, заметности и материалах корпусных конструкций НПА и торпед, что также требует адаптации характеристик противоторпед к новому типу целей.
Можно также добавить, что вопрос размещения на уничтожающих СБНА (НПА-охотниках) морского оружия (самотранспортирующихся мин, торпед и противоторпед), требует создания специальных пусковых установок. Ниже этот вопрос будет рассмотрен более подробно.
3.3. Захватывающие системы борьбы с необитаемыми аппаратами
Захватывающие СБНА являются очень перспективными, так как они позволяют получать информацию о разработках противника, а также использовать захваченные аппараты в своих целях. В настоящее время (по сведениям, доступным в печати) подобные системы еще находятся только в начальной стадии активной разработки.
Ярким примером использования подобных систем против воздушных необитаемых аппаратов может служить случай, описываемый ниже.
4 декабря 2011 года недалеко от города Кашмер (северо-восточная часть Ирана) иранскими вооруженными силами был захвачен американский беспилотный летательный аппарат-разведчик RQ-170 Sentinel производства компании Lockheed Martin [35]. БЛА этого типа изготавливаются с применением технологии «стэлс», а их характеристики являются строго секретными. При этом до конца 2009 года само существование таких аппаратов отрицалось представителями вооруженных сил США.
Рис. 42. Иранские военные осматривают захваченный БЛА.
Захват БЛА-«невидимки», вошедшего в воздушное пространство Ирана со стороны Афганистана для слежения за иранскими ядерными объектами, был произведен без применения средств ПВО. Как сообщалось позднее, операция осуществлялась с применением обычных средств радиоэлектронной борьбы (согласно некоторым источникам [36], для этой цели был применен российский комплекс исполнительной радиотехнической разведки (ИРТР) 1Л222 «Автобаза»). С их помощью был разорван канал спутниковой связи между БЛА и наземными операторами, располагающимися на территории США. Такая ситуация учтена в программе управления аппарата, которая переводит его в режим автоматического полета по программе возвращения на базу. При этом для определения места положения БЛА используется сигнал системы GPS. Иранские специалисты подменили данный сигнал на другой, согласно которому, текущее местоположение аппарата соответствовало территории Афганистана. Автопилот «беспилотника» посчитал, что он прибыл на базу и совершил посадку на территории Ирана, получив незначительные повреждения шасси из-за разницы в высотах над уровнем моря аэродрома базирования и местности, на которую было совершено приземление.
В апреле 2012 г. представители армии стражей исламской революции объявили о том, что информация, полученная аппаратом в процессе эксплуатации и сохраненная в его бортовом журнале, была ими полностью расшифрована. Также было объявлено о том, что в настоящее время иранские инженеры работают над созданием аналога БЛА, а его конструктивными особенностями интересовались представители технических разведок ряда стран, в том числе России и Китая.
Интересно также отметить, что уже в феврале 2013 г. Иран продемонстрировал свой новый истребитель-бомбардировщик Qaher-313, построенный по технологии «стэлс». Согласно заявлению Министра обороны Ирана, «…Qaher-313 является полностью отечественным самолетом, разработанным и построенным нашими авиационными экспертами. Он может уклоняться от радаров и летать на очень низких высотах, нести на борту вооружение, атаковать самолеты противника и садиться на коротких взлетнопосадочных полосах…» [37].
Если рассматривать возможные технические решения, позволяющие обеспечить пленение (захват) необитаемых морских надводных и подводных аппаратов, нельзя пройти мимо такого простого и многократно испытанного средства, как сети, которые позволяют надежно зафиксировать схваченный аппарат.
Эффективность сетей, особенно при их применении против аппаратов с собственным движителем (винтом) многократно подтверждалась на практике, в том числе и во время Второй Мировой войны, в ходе которой противолодочные сети (рис. 43) нашли широкое применение. В качестве примера можно вспомнить блокаду немецким флотом подводных лодок Краснознаменного Балтийского флота в Финском заливе, во время которой залив был перегорожен противолодочными сетями в наиболее узкой его части, между островом Нарген и полуостровом Порккала-Удд.
Рис. 43. Использование противолодочных сетей [36].
Одним из последних примеров запутывания достаточно массивного аппарата в подводных сетях может служить случай, произошедший в августе 2005 г. у берегов Камчатки.
4 августа спасательный глубоководный аппарат проекта «Приз» АС-28 выполнял учебное погружение в бухте Березовой в 75 километрах к югу от Петропавловска-Камчатского и на глубине около 190 метров запутался в обрывках рыболовецких сетей и тросах антенны глубоководного гидроакустического комплекса. Самостоятельно выпутаться из сетей аппарату не удалось, в связи с чем для спасения 7-ми членов экипажа была организована специальная операция, в которой приняли участие водолазные специалисты из России, США, Великобритании и Японии, которым удалось 7 августа с применением телеуправляемого НПА освободить аппарат из сетей, после чего он благополучно вернулся на поверхность [38].
Отметим, что рыболовные сети никак специально не проектировались для захвата аппарата, имеющего подводное водоизмещение 110 т, и следующие размеры корпуса: макс. длина — 13,54 м; макс. ширина — 3,8 м; макс. высота — 5,7 м. Однако даже таких сетей оказалось достаточно для пленения аппарата, по размерам сопоставимого с разрабатываемым НПА «Manta»!
Еще один возможный вариант захвата аппаратов особенно хорошо применим к НПА-глайдерам, использующим эффект планирования, при котором подводный аппарат погружается или всплывает по пологой, не обязательно прямолинейной, траектории, позволяющей ему перемещаться в заданном направлении только за счет сил, действующих на него со стороны морской среды. Изменение плавучести глайдеров, как правило, обеспечивается путем изменения значения их осредненной плотности [39]. Например, глайдер может изменять свою плотность, передвигая вперед-назад маленький поршень, который будет соответственно увеличивать или уменьшать его объем. Так как плотность любого объекта может быть вычислена путем деления его массы на его же объем, а масса объекта при перемещении поршня остается постоянной, то задача сводится к определению величины изменяемого объема, необходимого для достаточного изменения плавучести. Крылья же позволяют глайдеру управляемо перемещаться вперед.