История электротехники
История электротехники читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Требования к точности и вероятности попадания торпеды в корабль по опыту войны ускорили принятие специальных мер, реализуемых с помощью сложных электротехнических систем: автоматизированных систем подготовки и производства пуска торпеды, автоматического расчета траектории хода с учетом данных разведки о положении атакуемого корабля, параметров его движения.
Первая отечественная торпеда с электронным самонаведением была принята на вооружение в 1950 г. (главный конструктор Н.Н. Шамарин). Это событие явилось историческим и позволило перейти к созданию противолодочного оружия. Такая торпеда была создана в НИИгидроприбор под руководством главного конструктора В.А. Поликарпова. Торпеда могла самонаводиться на подводные лодки на глубине до 200 м. Поиск эффективных технических средств поражения подводных лодок привел к созданию нового вида противолодочного оружия — неуправляемых и управляемых противолодочных ракет.
Первым комплексом такого оружия явился комплекс РПК-1 с неуправляемой баллистической ракетой. Он поступил на вооружение противолодочных авианесущих крейсеров «Москва» и «Ленинград». В 60-е годы для вооружения многоцелевых подводных лодок был создан комплекс РПК-2. В дальнейшем этот комплекс был усовершенствован для установки на надводные корабли, а электронная система управления торпедой на конечном участке включала в свой состав активно-пассивную гидроакустическую головку самонаведения. Комплекс разрабатывался под руководством главных конструкторов Л.В. Люльева, А.С. Абрамова, а сама торпеда — под руководством В.А. Левина.
В начале 70-х годов на вооружение больших противолодочных кораблей был принят ракетный комплекс РПК-3 с крылатой ракетой, несущей в своем составе малогабаритную самонаводящуюся торпеду. В последующем комплекс был оборудован радиолокационной головкой самонаведения, позволившей наводиться и на надводные корабли без отделения торпеды, что сделало комплекс универсальным. Этот комплекс создавался в КБ «Радуга» под руководством А.Я. Березняка и И.С. Селезнева, а также во ВНИИ «Альтаир» под руководством Г.Н. Волгина.
Для повышения эффективности применения торпедного оружия сразу после войны были созданы сложные радиоэлектронные системы управления стрельбой. Одной из первых появилась система «Ленинград», разработанная под руководством А.И. Буртова и принятая на вооружение в 1956 г. Система обеспечила скрытное применение торпедного оружия по данным целеуказания, выдаваемого с гидроакустической станции. В 1965 г. система была модернизирована с применением вычислительных средств, позволивших вычислять параметры траектории движения торпеды с точностью до первой производной. Затем появились комплексы «Брест» и «Спрут» (1967 г.) для вооружения первых атомных подводных лодок, а в 1971 г. был сдан комплекс «Аккорд» под руководством главного конструктора А.И. Буртова, который объединил задачи стрельбы торпедным оружием и боевого управления кораблем. Комплекс создавался при участии академика В.А. Трапезникова.
Для больших авианесущих кораблей был создан комплекс управления стрельбой «Пурга», а затем «Лахна» под руководством главных конструкторов А.А. Тулаева, М.И. Левианта, И.В. Симановского. Последний комплекс явился универсальным интегрированным комплексом, способным производить стрельбу торпедами, ракетами-торпедами и глубинными бомбами.
Гидроакустика. Гидроакустические колебания являются единственным носителем энергии, способным распространяться в водной среде на большие расстояния вплоть до десятков и даже сотен километров. В сочетании с электронными системами обработки и формирования гидросигналов это обстоятельство позволило создавать гидроэлектронные комплексы для решения таких важных задач, как обнаружение и классификация объектов в толще воды и на дне океана, гидроакустическая навигация и др.
В истории отечественной гидроакустики можно выделить следующие основные этапы:
1920–1930 гг. — начальные исследования и разработки, которые проводились в акустической лаборатории Государственного электротехнического института (руководитель академик Н.Н. Андреев) и Остехбюро (руководитель академик В.Ф. Миткевич).
1931 г. — коллегия Наркомата водного транспорта приняла решение о создании завода «Водтрансприбор» по выпуску гидроакустической техники.
1934 г. — под руководством В.Н. Тюлина создан первый отечественный эхолот.
1935 г. — начало серийного выпуска гидроакустических средств обнаружения и связи.
1940 г. — гидроакустическая продукция стала профильной для завода «Водтрансприбор». Созданы и серийно освоены шумопеленгаторы «Посейдон», «Меркурий», «Марс», гидролокатор «Тамир», прибор гидроакустической связи «Сириус», эхолот ЭМС-1 и другие системы.
1949 г. — создается первый в стране научно-исследовательский институт гидрологии и гидроакустики — ЦНИИморфизприбор.
1956–1965 гг. — первый десятилетний этап ускоренного развития гидроакустической отрасли, обусловленного таким внешним фактором, как создание первой отечественной баллистической ракеты морского базирования; первой отечественной атомной подводной лодки, несущей различные виды ракетного и торпедного оружия; новых надводных кораблей с ракетным оружием.
В этот период на вооружение ВМФ было принято 16 гидроакустических станций.
1966–1975 гг. — второй десятилетний этап ускоренного развития гидроакустической отрасли. В этот период было создано и принято на вооружение ВМФ 20 новых систем, в том числе первые отечественные многофункциональные гидроакустические станции «Рубин» и «Енисей» для подводных лодок, «Орион» для надводных кораблей, не имевшие аналогов в отечественной и мировой практике, гидроакустические навигационные средства обеспечения плавания подводных лодок в Арктике «Круг», «Торос» и др.
1976–1985 гг. — третий десятилетний этап ускоренного развития гидроакустической отрасли. В этот период на вооружение ВМФ было принято более 40 новых систем. Среди них многофункциональные гидроакустические станции для подводных лодок и надводных кораблей, гидроакустические навигационные средства. В этих системах были реализованы прогрессивные технологические решения: цифровая электронная обработка сигналов, методы автоматизированной гидроакустической классификации, способы гидроакустической связи с повышенной скрытностью.
На конец 80-х годов в области промышленной гидроакустики эффективно работали НИИ «Риф», Киевский НИИгидроприборов, ЦНИИморфизприбор, представляющий собой самую мощную в России исследовательскую и проектную организацию гидроакустического профиля. Были созданы научные школы по ряду направлений в гидроакустике:
1. Теория и пути практической реализации пассивных и активных систем освещения обстановки в океане (Е.И. Аладышкин, Р.Х. Бальян, В.А. Какалов, Я.С. Карлик и др.).
2. Теория и пути практической реализации гидроакустических навигационных систем (Г.Е. Смирнов, С.А. Смирнов, В.И. Бородин, Ю.А. Николаенко, А.В. Богородский и др.).
3. Теория проектирования и технология изготовления гидроакустических преобразователей, антенн и антенных обтекателей (Е.А. Корепин, В.Б. Жуков, М.Д. Смарышев и др.).
4. Пути создания многопроцессорных цифровых вычислительных систем реального времени с алгоритмическим и программным обеспечением (Ю.А. Корякин, А.Р. Лисе, В.Г. Гусев, А.В. Рыжиков).
Эти научные направления и промышленные технологии позволили вооружить подводные лодки и надводные корабли самым современным гидроакустическим оборудованием, что обеспечило возможность применять самое современное ракетное и торпедное оружие, имеющее большую дальность действия, достигающую десятков и сотен километров.
Корабельная навигационная техника. В 20-х годах перед нашей страной остро стал вопрос обеспечения флота системами управления стрельбой и навигационной техникой. Эта задача была поручена заводу «Электроприбор». В 30-е годы на этом заводе были разработаны первые отечественные гироскопические приборы для авиации и флота. Здесь под руководством академика А.Н. Крылова сложилась российская школа гироскопии, которая послужила основой для развития этой техники и создания института, который с 1966 г. именуется ЦНИИ-электроприбор.