Юный техник, 2006 № 11
Юный техник, 2006 № 11 читать книгу онлайн
Популярный детский и юношеский журнал.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
А.ИЛЬИН
Фото М. МАРАХТАНОВА
ПОЛИГОН
Очень странный летающий объект
На прошедшей в июне в Москве выставке научно-технического творчества молодежи НТТМ-2006 было немало интересного. Но экспонат, который показали ребята из Детского и молодежного центра «Сокольники», заслуживает особого рассказа.
Посмотрите на рисунок 1. Три соты из фольги, поверху укреплена на изоляторах тоненькая проволочка. Вот и весь… летательный аппарат. Как только к фольге и проволочке приложить высокое напряжение, сооружение взлетает и устойчиво висит примерно в 30–40 см от стола. Он взлетел бы и выше, но высота его подъема намеренно ограничена нитями, прикрепленными к столу кнопками.
В других опытах странный летающий объект СЛО (пока назовем его так) уверенно обнаруживал способность подняться на любую высоту, лишь бы хватало длины тоненьких проводков, по которым к нему подводится напряжение.
А теперь кое-что посчитаем. Весит СЛО 35 г, но может поднять еще около 50 г груза. Полет модели обеспечивает источник с постоянным напряжением около 17 000 В при токе 200 микроампер. Если эти цифры перемножить, получится, что аппарат потребляет мощность 3,4 Вт. Выходит, что каждый киловатт мощности, подведенной к модели, создает подъемную силу в 25 кг. Много это или мало?
Подъемная сила винта вертолета составляет всего 5,4 кг/кВт. У самолетов с вертикальным взлетом подъемная сила на единицу мощности еще в 2–3 раза ниже. Еще в сотни раз ниже она у ракет.
Так что вертикально взлетающий аппарат, построенный школьниками под руководством доцента кафедры электротехники и электроники Московского государственного университета приборостроения и информатики, кандидата технических наук М.М. Лавриненко, можно считать самым эффективным в мире. Найти такому аппарату области применения не составляет труда. Но попробуем сначала разобраться, на что и как расходуется мощность, которую получает этот летающий объект от источника питания.
Специалисты знают, что еще в 1961 году работавший в США русский летчик-испытатель Б.В. Сергиевский предложил летательный аппарат «ионокрафт», который не содержал подвижных частей и летал при помощи электричества.
Изобретатель построил даже его модель. Она состояла из ажурной пластиковой фермы, в узлах которой размещались иголки. Под фермой располагалась легкая алюминиевая сетка. Иголки и сетка подключались к полюсам источника тока. Модель поднималась в воздух на высоту, равную примерно половине диагонали сетки.
Во время полета модели на иголках возникал коронный разряд. Получавшиеся ионы воздуха подхватывались электрическим полем и отбрасывались вниз. Так же, как при отбрасывании воздуха винтом вертолета, возникала сила реакции, поднимающая аппарат.
Изобретателю не удалось добиться свободного полета модели. Она всегда находилась на некоторой высоте вблизи пола, получая дополнительную подъемную силу за счет эффекта «воздушной подушки».
Во время полета аппарат Б.В.Сергиевского светился, были слышны шипение и треск коронного разряда, ощущался запах озона. Ничего подобного нет при полете представленной на выставке модели. Какая же сила заставляет ее подниматься в воздух?
В 1928 году американский физик Томас Т.Браун и немецкий физик Пауль Ф. Бифильд во время экспериментов с высоковольтными установками обнаружили странный эффект. На конденсаторе с неодинаковыми размерами обкладок возникала сила, направленная в сторону обкладки меньших размеров. Ни одна из известных теорий не может объяснить обнаруженного явления. Однако оно существует и получило название эффекта Бифильда — Брауна (см. статью «Как построить летающий остров»). По некоторым данным, этот эффект действует даже в вакууме.
Устройство, которое было представлено на выставке НТТМ-2006, поднимается в воздух именно за счет этого эффекта. Соты из фольги выполняют роль большей, а проволока — меньшей обкладки конденсатора. При подаче на них напряжения появляется сила, направленная в сторону меньшей обкладки, то есть проволоки.
Было подозрение, что она возникает за счет взаимодействия с постоянным электростатическим полем Земли. Однако если бы это было так, то эта сила бы очень зависела от полярности приложенного к объекту напряжения. Но этого не наблюдается. Более того, СЛО с одинаковым успехом парит в воздухе при любой полярности постоянного напряжения и при питании переменным током.
На рисунке 2 показаны размеры аппарата, представленного на выставке. Они подобраны экспериментально и обеспечивают наибольшую подъемную силу.
Большая обкладка конденсатора сделана из пищевой алюминиевой фольги. К ней при помощи эпоксидной смолы приклеены стойки из пенопласта 4x4x75 мм. По ним через отверстия протянута тонкая медная или — для прочности — нихромовая проволока. Напряжение к обкладкам конденсатора подводится при помощи медных проволочек диаметром 0,05 — 0,1 мм. Для того чтобы аппарат не поднялся слишком высоко или не улетел вовсе, его удерживают три тонкие лески толщиною 0,1 мм.
Источником питания для аппарата может быть школьный высоковольтный преобразователь типа «Разряд» или источник питания кинескопа телевизора.
ВНИМАНИЕ!Соблюдайте особую осторожность при работе с высоким напряжением. А еще лучше проводить эксперименты в присутствии взрослых.
М. ЛАВРИНЕНКО
Рисунки А. ИЛЬИНА
ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ
Высоковольтный источник напряжения
Вы прочитали статью про летательный аппарат, который поднимается в воздух за счет малоизученного эффекта Бифильда — Брауна. Для опытов, как было сказано, нужен источник, способный развивать напряжение постоянного тока порядка 20 кВ при мощности нагрузки около 5 Вт, работающий от бытовой электросети с напряжением 220 В.
Вот как может быть устроен такой источник. Его первая ступень — мостовой выпрямитель сетевого напряжения VD1 с конденсатором С1. Она дает на выходе постоянное напряжение около 310 В. Это напряжение питает автогенератор на транзисторе VT1 и трехобмоточном трансформаторе Т2. Обмотка генератора L1 образует с конденсатором С2 колебательный контур, определяющий работу с частотой 50 Гц. Вспомогательная обмотка L2 создает обратную связь, которая обеспечивает режим автогенерации, а обмотка L3 образует следующую ступень повышения напряжения до уровня около 3 кВ.
Включенный последовательно с первичной обмоткой светодиод НL1 служит индикатором рабочего режима генератора.
Требуемое напряжение получается после диодно-емкостного умножителя напряжения, в котором работают элементы VD2…VD11 и С4…С13.
Нагрузка подключается через токоограничительный резистор R6. Ток покоя транзистора (около 5 мА), от которого зависит устойчивость работы автогенератора, задается соотношением номиналов резисторов R4, R5 в цепи базы транзистора. Поскольку использование осветительной сети небезопасно, в схеме установлен маломощный разделительный трансформатор Т1, имеющий коэффициент трансформации 1:1, с изолированной от сети вторичной обмоткой.
В умножителе напряжения можно использовать выпрямительные столбики типа КЦ123 и конденсаторы С4…С13 типа К15-5 на напряжение 6,3 кВ емкостью 500 пФ. Конденсатор С1 — оксидный, типа К50; С2 и СЗ — КП40П-2. Резисторы годятся марки МЛТ.
Рис. 1
Наиболее ответственным узлом является самодельный трансформатор Т2. Его обмотки располагаются в одиннадцати секциях каркаса, внутри которого помещен цилиндрический сердечник из феррита марки 400НН диаметром 8 и длиной около 140 мм. Повышающая обмотка L3 имеет 3300 витков провода ПЭЛШ0-0,1, равномерно распределенных между секциями каркаса. У обмотки L2 обратной связи — 4 витка провода ПЭЛШ0-0,2, намотанных поверх обмотки L1 и изолированных от нее слоем скотча. Обмотка L1 содержит 300 витков провода ПЭЛШ0-0,2; она наматывается в три ряда на изолирующей гильзе, которая располагается на краю каркаса со стороны левого по схеме вывода обмотки L3. Каркас можно склеить из нескольких слоев плотной бумаги, но лучше изготовить его из полистирола или фторопласта.