CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии
CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии читать книгу онлайн
Это 2-е издание популярной за рубежом и в России книги Владо Дамьяновски — всемирно известного эксперта в области видеонаблюдения и охранного телевидения, в которой обобщено около десяти лет теоретических исследований и более двадцати лет практического опыта. Книга ориентирована на довольно широкую читательскую аудиторию — менеджеров по системам безопасности, инсталляторов и интеграторов оборудования, консультантов, разработчиков и конечных пользователей. Кроме того, книга будет по достоинству оценена теми, кто собирается заняться системами видеонаблюдения и охранным телевидением.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Основные группы используемых в волоконной оптике фотодиодов:
— P-N фотодиод (PNPD)
— PIN фотодиод (PINPD)
— Лавинный фотодиод (APD)
P-N фотодиод похож на обычный кремниевый P-N диод, чувствительный к инфракрасному свету. Основные его характеристики — низкая чувствительность и большое время нарастания сигнала.
PINPD — это модифицированный P-N фотодиод с внутренним слоем между Р- и N-типами кремния.
Характеризуется высокой чувствительностью и малым временем нарастания сигнала.
Лавинный диод аналогичен PINPD, но имеет одно преимущество — почти каждый падающий на него фотон дает более одной пары электрон/дырка в результате внутренней цепной реакции (лавинный эффект). Лавинный диод более чувствителен, чем PINPD, но дает больше шума.
Все эти базовые устройства комбинируются с каскадами усиления и «трансимпеданса» (усилитель, управляемый током), которые усиливают сигнал до требуемого уровня напряжения/тока.
Частоты передачи в волоконной оптике
Затухание сигнала в оптоволоконном кабеле зависит от свойств материала и от внешних воздействий.
Эффекты, обусловленные влиянием материала:
— Рэлеевское рассеяние, вызванное неоднородностями в стекловолокне, размеры которых малы по сравнению с длиной волны. На 850 нм затухание за счет рэлеевского рассеяния может достигать 1.5 дБ/км, на 1300 нм эта величина меньше — 0.3 дБ/км, а на 1550 нм еще меньше — 0.15 дБ/км.
— Поглощение. Поглощение происходит в том случае, если в волокне присутствуют гидроксильные ионы и/или ионы металлов. Поглощение сказывается на ослаблении сигнала гораздо меньше, чем рэлеевское рассеяние, и ответственно за 0.2 дБ/км.
Внешние воздействия, приводящие к ослаблению сигнала:
— Микроизгибы. Возникают из-за недостаточной точности изготовления кабеля — неоднородности волоконного кабеля по длине. Это может дать несколько дБ/км.
— Геометрия стекловолокна. Как и предыдущий пункт, но чаще из-за плохого контроля за диаметром при вытяжке кабеля.
На приведенном ниже графике демонстрируется очень важный факт: при передаче сигнала по оптоволоконному кабелю различные длины волн (частоты) ослабляются в разной степени.
Рис. 10.43. Окна в волоконной оптике
Частотные зоны, сосредоточенные вокруг вертикальных штриховых линий, называются окнами волоконной оптики. Всего их три:
— Первое окно на 850 нм
— Второе окно на 1300 нм
— И третье окно на 1550 нм.
Первое окно на самом деле не дает минимального ослабления (в сравнении с более высокими частотами), но именно эта частота была впервые использована в оптической связи. Созданные для этой частоты светодиоды были достаточно эффективны и просты в изготовлении.
Все же это самая подходящая длина волны и самый дешевый способ передачи сигналов на короткие расстояния — как в случае видеонаблюдения.
Все чаще в видеонаблюдении используется длина волны 1300 нм. Эту длину волны предпочитают в профессиональной телекоммуникации, а также в системах видеонаблюдения с протяженными линиями передачи, где высокие цены на источники света не являются доминирующим фактором. Потери на этой частоте гораздо ниже — это тоже видно из графика. Разница в ослаблении сигнала между 850 нм и 1300 нм составляет примерно 2–3 дБ/км.
Длина волны 1550 нм дает еще меньшие потери, и системы будущего ориентируются именно на это окно.
Приведем для иллюстрации значение типичного ослабления сигнала в многомодовом оптоволоконном кабеле 62.5/125 мкм с источником света 850 нм — оно составляет менее 3.3 дБ на километр. Если с этим же стекловолокном использовать источник в 1300 нм, то ослабление составит менее 1 дБ. Следовательно, можно получить большую протяженность линии с тем же оптоволоконным кабелем, лишь заменив источник света. Это особенно полезно в случае аналогового сигнала, каковым и является видеосигнал.
Если с кабелем 62.5/125 мкм использовать источник 850 нм, то можно протянуть линию, по меньшей мере, на пару километров, чего обычно вполне достаточно для системы видеонаблюдения. Большую протяженность можно получить, если использовать многомодовое волокно с плавным профилем, а если при этом взять еще и источник 1300 нм (вместо 850 нм), то линия может стать еще длиннее.
Самая длинная линия связи получится с одномодовым оптоволоконным кабелем и источниками света в 1300 нм и 1550 нм.
Типичное ослабление для источника 1300 нм составляет менее 0.5 дБ/км, для 1550 нм — менее 0.4 дБ/км.
Пассивные компоненты
Кроме вышеупомянутых фотодиодов и детекторов, которые относятся к активным устройствам, в системах волоконной оптики используются и пассивные компоненты.
Это:
— Спайки: постоянное или полупостоянное сращение волокон.
— Разъемы: позволяют повторно подсоединять или отсоединять кабели.
— Ответвители (coupler): устройства, распределяющие оптическую мощность между двумя или более волокнами или наоборот, объединяющие оптическую мощность нескольких волокон в одно.
— Коммутаторы: устройства, перераспределяющие оптические сигналы под ручным или электронным контролем.
Сращивание оптических волокон сваркой
Сварное соединение волокон часто осуществляется под микроскопом. Результат обычно получается хорошим, но оборудование может оказаться очень дорогим.
Процедура сращивания (сварка) оптических волокон состоит из очистки волокна, расщепления и помещения двух волокон в монтажный блок.
Точность позиционирования улучшается, если использовать микроскоп, который обычно является частью устройства. После выравнивания положения волокон, они свариваются при помощи дугового разряда. Этот процесс отслеживается, и если соединение получилось неудовлетворительным, то процесс повторяется.
Потери в местах сращивания невелики и обычно составляют порядка 0.1 дБ.
Рис. 10.44. Оборудование для сварки волокна
Рис. 10.45. ST-разъем и точка
Механическое сращивание
Пожалуй, это наиболее распространенный метод сращивания волокон, так как при этом используются недорогие инструменты, а результат получается довольно неплохим.
Волокна выравниваются механическим образом относительно поверхности и (обычно) «сажаются» на эпоксидную смолу. Результат не столь хорош, как при сварке, но может быть довольно близок. Но главное, что оборудование для механического сращивания стоит не так дорого.
Потери при хорошем механическом сращивании лежат в пределах 0.1–0.4 дБ.
Два основных принципа механического сращивания:
— Использование V-образной канавки
— Выравнивание осей.
Оба принципа показаны на рис. 10.46.
Рис. 10.46. Механическое сращивание
Чтобы соединение было хорошим, оптоволоконный кабель должен иметь хорошую концевую заделку — это все же самая трудная часть в прокладке стекловолокна. Здесь нужна высокая точность, терпение и немного практики. Любой может научиться делать концевую заделку оптоволоконного кабеля, а если установщики системы не имеют опыта работы с волокном, то можно пригласить специалистов, которые поставят нужные разъемы, заделают кабель и проверят его. Последнее — это самое главное мероприятие при установке оптоволоконного кабеля для систем видеонаблюдения.