-->

CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии

На нашем литературном портале можно бесплатно читать книгу CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии, Дамьяновски Владо-- . Жанр: Технические науки. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии
Название: CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии
Дата добавления: 16 январь 2020
Количество просмотров: 180
Читать онлайн

CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии читать книгу онлайн

CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии - читать бесплатно онлайн , автор Дамьяновски Владо

Это 2-е издание популярной за рубежом и в России книги Владо Дамьяновски — всемирно известного эксперта в области видеонаблюдения и охранного телевидения, в которой обобщено около десяти лет теоретических исследований и более двадцати лет практического опыта. Книга ориентирована на довольно широкую читательскую аудиторию — менеджеров по системам безопасности, инсталляторов и интеграторов оборудования, консультантов, разработчиков и конечных пользователей. Кроме того, книга будет по достоинству оценена теми, кто собирается заняться системами видеонаблюдения и охранным телевидением.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

Потери света при прохождении по волоконному кабелю объясняются следующими факторами:

— Стыковкой с источником

— Сращиванием световодов

— Затуханием в стекловолокне из-за его неоднородности

— Высокими температурами и т. д.

Проектируя систему видеонаблюдения с оптоволоконным кабелем, важно знать общее затухание, так как мы работаем с очень слабыми сигналами. Лучше работать с наихудшими оценками, чем использовать средние значения — только тогда возможно спроектировать надежную и качественную систему.

Для этого следует помнить, что в большинстве случаев выходная мощность излучения 850-нм светодиода лежит между 1 дБм и 3 дБм, а 1300-нм светодиод имеет несколько меньшую мощность — от 0 дБм до 2 дБм (помните, что мощность выражена относительно 1 мВт).

Наибольшие потери возникают при соединении светодиода и волокна.

Потери также зависят от числовой апертуры и от профиля волокна, который может быть ступенчатым или плавным.

Реалистичное значение потерь, вызванных соединением с источником, составляет около 14 дБ (относительно выходной мощности источника).

Источники света в оптоволоконной связи

Два основных компонента-источника света для оптоволоконного кабеля:

— Светодиоды (LED)

— Лазерные диоды (LD).

CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии - _383.jpg

Рис. 10.40. Лазерный диод

Оба источника дают частоты в инфракрасном диапазоне, то есть выше 700 нм.

Генерация света как в светодиодах, так и в лазерных диодах происходит в процессе рекомбинации электронов и дырок в P-N переходе при подведении прямого (однонаправленного) тока. Такой свет называется электролюминесцентным.

После рекомбинации пары электрон/дырка имеют меньшую энергию, чем каждая составляющая до рекомбинации. При рекомбинации пары электрон/дырка теряют энергию, равную разности энергетических уровней, которая излучается в виде фотонов (минимальная единица переноса света).

Длина волны, ассоциированная с фотоном, определяется уравнением:

A = hc/E (64)

где:

h — постоянная Планка, фундаментальная физическая постоянная, равная 6.63·1034  джоулей,

с — скорость света (300·106 м/с),

Е — ширина энергетической зоны P-N материала.

Так как h и с постоянны, то длина волны зависит только от энергетической зоны, то есть от используемого материала. Это очень важный вывод.

Для чистого арсенида галлия (GaAs) А равно 900 нм. Добавляя небольшое количество алюминия, можно уменьшить длину волны до 780 нм. Чтобы получить еще более короткие длины волн, используется фосфид галлия арсенида (GaAsP) или фосфид галлия (GaP).

Основные различия между светодиодом и лазерным диодом — это различия между спектрами генерируемого излучения и углами направленности.

Светодиод генерирует излучение с длинами волн, лежащими в окрестности некоторого центрального значения, как показано на рис. 10.41. Лазерный диод дает очень узкую полосу частот, почти одной длины волны.

P-N переход в светодиоде порождает излучение с более широким спектром, чем у лазерного диода, причем это излучение распространяется во всех направлениях, то есть светодиод не дает узконаправленного излучения. Дисперсия в сильной степени зависит от механического строения диода, его поглощения и отражения. Свет, однако, излучается во всех направлениях, и чтобы сузить пучок света, производители светодиодов помещают сверху что-то вроде фокусирующих линз. И все равно угол получается слишком большим и не годится для одномодового волокна. По этой причине светодиоды не используются в качестве передающих устройств с одномодовым оптоволоконным кабелем.

Лазерные диоды изготавливаются из того же материала, что и светодиоды, процесс генерации света тоже аналогичен, но зона перехода гораздо меньше, а концентрация дырок и электронов выше. Индуцированныи свет может излучаться только с очень маленькой поверхности. При определенных уровнях тока процесс генерации фотонов попадает в резонанс и число индуцированных фотонов резко увеличивается, давая больше фотонов с одинаковой длиной волны и фазой. Таким образом, оптическое усиление достигается организованным образом, и генерированный свет представляет собой когерентное (по фазе) индуцированное излучение. Слово LASER образовано из первых букв light amplification by stimulated emission of radiation, что означает: «усиление света при помощи индуцированного излучения».

Чтобы «запустить» индуцированное излучение, для лазерного диода требуется минимальный ток от 5 до 100 мА — это так называемый пороговый ток. Этот порог гораздо выше, чем для обычного светодиода.

Однако, после запуска индуцированного излучения, лазерный диод дает большую оптическую мощность и очень маленький угол рассеяния.

Для передачи высоких частот и аналоговых сигналов важно, чтобы выходное излучение было линейно связано с приложенным током возбуждения, а также имело широкую полосу.

Со светодиодами в отношении линейности все нормально, однако не столь хорошо дела обстоят в высокочастотной области (по сравнению с ЛД), хотя все же передаваемая частота превышает 100 МГц, а этого для видеонаблюдения более чем достаточно.

Лазерные диоды могут легко давать частоты выше 1 ГГц.

CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии - _384.jpg

Рис. 10.41. Спектр излучения светодиода (LED) и лазерного диода (LD)

CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии - _385.jpg

Рис. 10.42. Зависимость интенсивности светового излучения от силы тока для светодиода

Вышесказанное может быть проиллюстрировано аналогией, которую мы приводили при обсуждении магнитной записи. Представьте себе, что выходной спектр светодиода или ЛД — это острые кончики карандашей. В спектре светодиода будут карандаши с более толстыми кончиками, а в спектре ЛД — с более острыми. При помощи остро заточенного карандаша можно писать маленькие буквы и разместить больше текста на заданном пространстве, то есть сигнал, модулированный ЛД, будет содержать более высокие частоты.

Однако, светодиоды дешевле, имеют более линейную характеристику и не требуют специальной управляющей электроники. Светодиод 850 нм стоит около $10, а 1300 нм — около $100. Средний срок службы светодиодов чрезвычайно высок (106 — 108 часов).

ЛД более дорогие, стоят от $100 до $15000. После перехода через пороговое значение, они дают прекрасную линейную характеристику. ЛД часто включают схему управления температурой, так как для них очень важна операционная температура, а для выходной мощности необходима стабилизация обратной связью. Несмотря на все это, у ЛД больше ширина полосы частот модуляции, более узкий несущий спектр, и они генерируют большую мощность. Средний срок службы ЛД ниже, чем у светодиодов, но все же довольно высок (105 - 107 часов).

Всеобщее внимание привлекли новые, недавно появившиеся светодиоды — суперлюминесцентные диоды (СЛД). Технические характеристики СЛД лежат где-то между светодиодами и ЛД.

Для видеонаблюдения светодиоды — достаточно хорошие источники света. ЛД чаще используются в многоканальных широкополосных мультиплексорах, а также в случае протяженных линий из одномодового стекловолокна.

Фотодетекторы в волоконной оптике

Устройства, принимающие оптический сигнал на другом конце оптоволоконного кабеля, называются фотодиодами. В большинстве своем — это действительно тот или иной тип диода.

Перейти на страницу:
Комментариев (0)
название