Портрет трещины
Портрет трещины читать книгу онлайн
Разрушение… Мы сталкиваемся с ним ежедневно, ежечасно. Вот слабый стебель травы пророс сквозь асфальт и победно зеленеет. Как это призошло? Вот совершенно неожиданно переломилась мощная металлическая конструкция, которой стоять бы века… Почему? В чем причина катастроф и разрушений, происходящих в мире прочнейших материалов? Как ведет себя микроскопическая трещинка, откуда у нее такая сила и такое коварство? Как человек учится управлять этой страшной силой и обращать ее себе на пользу? На эти и многие другие вопросы отвечает автор. Непринужденная форма изложения, поэтические примеры, подтверждающие мысль автора, делают книгу интересной и познавательной. Книга предназначена для широкого круга читателей, для всех, кто хочет постичь одну из великих загадок природы. И прежде всего она адресована молодежи, стоящей перед выбором профессии.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
В. Л. Инденбом, а потом и американские физики Е. Дэш и М. Марцинковский нашли еще один вариант появления трещины. Под действием полосы скольжения, упершейся в межзереиную границу, в последней возникает ступенька. Это происходит примерно так же, как если бы нож бульдозера давил на вязкую стенку из сырой глины. Расчет показывает, что в окрестностях такой ступеньки возникли бы огромные внутренние напряжения (это и неудивительно – ведь процесс происходит в монолитном материале), настолько большие,что рано или поздно вместо ступеньки образовалась бы микротрещина. Поскольку она заняла бы место ступеньки и играла бы «примирительную» роль (ведь с ее появлением напряжения бы естественно снизились), ее называют аккомодационной. Иначе говоря, трещина – оппор-
тунист, приспосабливающий обе половины кристалла и две части сдвинутой границы к сосуществованию.
Вряд ли можно в коротком рассказе изложить все, что известно о зарождении микротрещин. Но не рассказать о двойниках и их спорной роли непростительно. Уж очень это необычный, экзотический дефект. Дислокация микроскопична и невооруженным глазом не видна. Другое дело двойник – он может быть размером, скажем, в половину большого кристалла. На монокристаллических материалах, например на висмуте, кальците, цинке и даже стали, двойники имеют форму полосок и хорошо видны. Как правило, обычная сталь всегда содержит двойниковые прослойки в большом количестве. Это связано с происхождением двойников – они легко возникают при динамическом нагружении. А поскольку при изготовлении сталь многократно подвергают различного рода ударам и деформациям при высоких скоростях на-гружения, двойников в ней невероятное количество. В каждом зерне их может быть несколько десятков. Но размер зерна исчисляют сотыми долями миллиметра. Следовательно, по сечению куска металла в 50 см можно насчитать около миллиона двойниковых прослоек и ни один из этих двойников не равнодушен к прочности. Огромная армия двойниковых прослоек в стали – постоянное напоминание нам:
(А. Межиров)
И напоминание это очень важно.
Дело в том, что нет в металле другого дефекта, в объяснении которого так много неопределенности. И ни один дефект, пожалуй, не умудряется быть одновременно столь полезным и столь же вредным, как двойник.
Но пришло время рассказать о том, что, собственно, представляет собой этот дефект. Буквально – это область переориентированной кристаллической решетки. Причем на вполне известные углы. Возьмем, к примеру, кристалл. Часть его зажмем в тиски, а на вторую будем давить. При определенном усилии кристалл повернется и займет зеркально отраженное положение по отношению к первоначальному.
Интересно, что тело двойникованного кристалла имеет ту же кристаллическую решетку, что и «материнская» часть, и при том совершенно неискаженную. Другими
словами процесс двойникования только разворачивает кристаллический материал, но не насыщает его дефектами. Иное дело – граница между основной и сдвойни-кованной частями кристалла: она забита дислокациями. Их так и называют – двойникующие. По существу двой-никование – это разновидность пластической деформации-формоизменение кристаллического материала.
В реальном кристалле двойникование протекает обычно в виде процесса, сосредоточенного в относительно узких полосах. Так и говорят: двойниковые прослойки. У такого двойника две границы с основным кристаллом. И на каждой – шеренги дислокаций, создающие вокруг двойниковой прослойки поле упругих напряжений. Еще более интенсивное поле возникает в поликристалле вследствие того, что в процессе двойникования внутри кристалла материал смещается при неизменных внешних границах тела. Итак, двойникование способно повышать напряженность металла в его микрообъемах. Это одно из обстоятельств, причем не главных, ведущих к тому, что в некоторых материалах при близком расположении двух параллельных двойниковых прослоек между ними образуются пустоты, имеющие строгие кристаллографические очертания, так называемые каналы Розе I рода. Это самые настоящие зародышевые микротрещины.
Еще интереснее пересечение двойниковых прослоек. В очаге, где оно происходит, кристалл раскалывается на множество мельчайших кристалликов размером в микроны и доли микрона. Это канал Розе II рода – трещина, заполненная раздробленным материалом. Поскольку объем разрушенного материала всегда больше, чем плотного кристаллического, эта зародышевая трещина как бы распирает окружающий ее кристалл и вызывает появление в нем дополнительных микротрещин.
Особенностью двойниковых прослоек, обнаруженной Р. И. Гарбером, является их обратимый характер. Двойник считают образованием упругим. Это означает, что при снятии нагрузки или при нагрузке обратного знака двойниковая прослойка может исчезнуть. В. А. Федоров и автор книги, опираясь на эти представления, показали, что каналы Розе I и II родов тоже обратимы. После исчезновения упругих двойников они могут «залечиваться» и прочности кристалла в этих условиях уже ничто не угрожает.
Однако для двойников это явление исключительное. Значительно чаще они создают трещины определенно необратимые и возможностей у них для этого предостаточно. Например, они могут создавать дислокации и «пускать» их вперед себя. Такие опережающие дислокации от двух двойников способны взаимодействовать и создавать микротрещины.
Двойники не упускают случая создать трещину и другими путями. Так, при пересечении двойника с поверхностью металла, с межзеренной границей, с неметаллическим включением и вообще с любым достаточно жестким макроскопическим барьером можно ожидать появления трещины и далеко не всегда механизм ее возникновения ясен. Зато несомненно другое: двойниковые прослойки опасны и являются потенциальными источниками зарождения микротрещин в металлах.
Значит, двойник, безусловно, вреден, значит, он зло?
Но тут всплывает органическое качество двойника- его невероятная многоликость.
В том-то и дело, что двойник – далеко не всегда зло. Начнем с того, что при нагружении металла двойник играет роль своего рода демпфера. Он довольно быстро включается в игру и, «протекая» по сечению металла, релаксирует, то есть гасит внешнюю нагрузку тем, что осуществляет быстрое пластическое деформирование. Особенно эффективен этот процесс при динамическом то есть очень быстром, нагружении. Дислокации еще только «расшевеливаются», освобождаются от своих атмосфер, отрываются от насиженных мест в кристаллической решетке, а двойник уже побежал. Да еще с какой скоростью. А. П. Королевым и автором этой книги определена эта скорость 2-2,5 км/с. И все время, пока двойник «сломя голову» мчится по кристаллу, он снимает внешнее напряжение, работая на прочность металла. В процессе динамического нагружения стали в течение 20 мкс двойники остаются один на один с внешним на-гружением и разряжают его до подхода главных оборонительных сил металла – потоков дислокаций. Таким образом, они принимают первый удар и защищают металл. Все ясно, скажет читатель, двойник – добро. Этот хамелеон-двойник преподносит нам новый сюрприз. Пока он защищает металл, поглощая внешнюю нагрузку, он уже «думает» о будущем. И «мысли» его, к сожалению, «темные». Уже в процессе своего, казалось бы, за-
гцитного бега, бега ради жизни, двойники начинают создавать микротрещины, Увы, мы уже знаем, к чему это рано или поздно приведет…
Странный дефект! Ну, а если он уже есть, как с ним живет металл? Может быть, здесь двойникам можно, наконец, доверять? Может быть, они поддержат прочность? Можно ли на это надеяться?
Двойники верны своей природе и здесь. С одной стороны, они способны притормаживать макроскопическую трещину, коль скоро она распространяется в металле. С другой – они охрупчивают металл, понижая его сопротивление хладноломкости. Вот так всегда: с одной стороны… с другой стороны…