Гидравлика
Гидравлика читать книгу онлайн
Введите сюда краткую аннотацию
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
33. Уравнение Бернулли для движения вязкой жидкости
Элементарная струйка при установившемся движении вязкой жидкости
Уравнение для этого случая имеет вид (приводим его без вывода, поскольку его вывод сопряжен с применением некоторых операций, приведение которых усложнило бы текст)
Потеря напора (или удельной энергии) hПp – результат того, что часть энергии превращается из механической в тепловую. Поскольку процесс необратим, то имеет место потеря напора.
Этот процесс называется диссипацией энергии.
Другими словами, hПp можно рассматривать как разность между удельной энергией двух сечений, при движении жидкости от одного к другому происходит потеря напора. Удельная энергия – это энергия, которую содержит единичная масса.
Поток с установившимся плавно изменяющемся движением. Коэффициент удельной кинематической энергии Х
Для того, чтобы получить уравнение Бернулли в этом случае, приходится исходить из уравнения (1), то есть из струйки надо переходить в поток. Но для этого нужно определиться, что представляет собой энергия потока (которая состоит из суммы потенциальной и кинематической энергий) при плавно изменяющемся потоке
Разберемся с потенциальной энергией: при плавном изменении движения, если поток установившийся
Окончательно при рассматриваемом движении давление по живому сечению распределено согласно гидростатическому закону, т. е.
где величину Х называют коэффициентом кинетической энергии, или коэффициентом Кориолиса.
Коэффициент Х всегда больше 1. Из (4) следует:
34. Гидродинамический удар. Гидро– и пьезо– уклоны
В силу плавности движения жидкости для любой точки живого сечения потенциальная энергия Еп = Z + p/ρg. Удельная кинетическая Еk= Xυ2/2g. Поэтому для сечения 1–1 полная удельная энергия
Сумму правой части (1) также называют гидродинамическим напором Н. В случае невязкой жидкости U2= xυ2. Теперь остается учесть потери напора hпр жидкости при ее движении к сечению 2–2 (или 3–3).
Например, для сечения 2–2:
Следует отметить, что условие плавной изменяемости должно быть выполнено только в сечениях 1–1 и 2–2 (только в рассматриваемых): между этими сечениями условие плавной изменяемости необязательно.
В формуле (2) физический смысл всех величин приведен ранее.
В основном все так же, как и в случае с невязкой жидкостью, основная разница в том, что теперь напорная линия Е = Н= Z + p/ρg + Xυ2/2g не параллельна к горизонтальной плоскости сравнения, поскольку имеет места потери напора
Степень потери напора hпр по длине называют гидравлическим уклоном J. Если потеря напора hпр происходит равномерно, то
Числитель в формуле (3) можно рассматривать как приращение напора dH на длине dl.
Поэтому в общем случае
Знак минус перед dH/dl – потому, что изменение напора по его течению отрицательно.
Если рассмотреть изменение пьезометрического напора Z + p/ρg, то величину (4) называют пьезометрическим уклоном.
Напорная линия, она же линия удельной энергии, находится выше пьезометрической линии на высоту u2/2g: здесь то же самое, но только разница между этими линиями теперь равна xυ2/2g. Эта разница сохраняется также при безнапорном движении. Только в этом случае пьезометрическая линия совпадает со свободной поверхностью потока.
35. Уравнение Бернулли для неустановившегося движения вязкой жидкости
Для того, чтобы получить уравнение Бернулли, придется определить его для элементарной струйки при неустановившемся движении вязкой жидкости, а затем распространять его на весь поток
Прежде всего, вспомним основное отличие неустановившегося движения от установившегося. Если в первом случае в любой точке потока местные скорости изменяются по времени, то во втором случае таких изменений нет.
Приводим уравнение Бернулли для элементарной струйки без вывода:
здесь учтено, что υω = Q; ρQ = m; mυ = (КД)υ.
Так же, как и в случае с удельной кинетической энергией, считать (КД)υ не таккто просто. Чтобы считать, нужно связать его с (КД)υ. Для этого служит коэффициент количества движения
Коэффициент a′ принято называть еще и коэффициентом Бусинеска. С учетом a′, средний инерционный напор по живому сечению
Окончательно уравнение Бернулли для потока, получение которого и являлось задачей рассматриваемого вопроса имеет следующий вид:
Что касается (5), то оно получено из (4) с учетом того, что dQ = wdu; подставив dQ в (4) и сократив ω, приходим к (6).
Отличие hин от hпр прежде всего в том, что оно не является необратимым. Если движение жидкости с ускорением, что значит dυ/t > 0, то hин > 0. Если движение замедленное, то есть du/t < 0, то hин < 0.
Уравнение (5) связывает параметры потока только в данный момент времени. Для другого момента оно может уже оказаться не достоверным.
36. Ламинарный и турбулентный режимы движения жидкости. Число Рейнольдса
Как нетрудно было убедиться в вышеприведенном опыте, если фиксировать две скорости в прямом и обратном переходах движения в режимы ламинарное → турбулентное, то
υ1 ≠ υ2
где υ1 – скорость, при которой начинается переход из ламинарного в турбулентный режим;
υ2 – то же самое при обратном переходе.
Как правило, υ2 < υ1. Это можно понять из определения основных видов движения.
Ламинарным (от лат. lamina – слой) считается такое движение, когда в жидкости нет перемешивания частиц жидкости; такие изменения в дальнейшем будем называть пульсациями.
Движение жидкости турбулентное (от лат. turbulentus – беспорядочный), если пульсация местных скоростей приводит к перемешиванию жидкости.
Скорости перехода υ1, υ2 называют:
υ1– верхней критической скоростью и обозначают как υв. кр, это скорость, при которой ламинарное движение переходит в турбулентное;
υ2– нижней критической скоростью и обозначают как υн. кр, при этой скорости происходит обратный переход от турбулентного к ламинарному.
Значение υв. кр зависит от внешних условий (термодинамические параметры, механические условия), а значения υн. кр не зависят от внешних условий и постоянны.
Эмпирическим путем установлено, что:
где V – кинематическая вязкость жидкости;
d – диаметр трубы;
R– коэффициент пропорциональности.
В честь исследователя вопросов гидродинамики вообще и данного вопроса в частности, коэффициент, соответствующий uн. кр, называется критическим числом Рейнольдса Reкр.