Сколько будет 2+2?
Сколько будет 2+2? читать книгу онлайн
Книга-открытие. Читая ее, обнаруживаешь, что самые элементарные истины неотрывны от общих представлений об окружающем нас мире, что невозможно понять даже очевидное, если не выработана способность свободно ориентироваться в их сфере. Любая идея всегда оказывается вплетенной в глобальный контекст всей человеческой культуры, и полнота осмысления предмета зависит лишь от степени овладения последней. Невозможно стать профессионалом, замыкаясь в узком «туннеле» специализации.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Если мы говорим о машинах, то те же 68, 49 – это еще не физические единицы, а только абстрактные расчетные величины. В сущности это такие же «явочные» автомобили, вернее сказать, машины, находящиеся в полной технической готовности. Но ведь машины, для того чтобы быть в полной технической готовности, требуют регулярного технического обслуживания и ремонта, иногда они попадают в аварию. Все это так же требует времени, в течение которого они оказываются в вынужденном простое, а значит, и здесь нужны свои поправки, учет какой-то своей «дельты качества». Поэтому и здесь переход к списочным автомобилям влечет за собой увеличение их количества по сравнению с уже рассчитанной величиной.
Заметим попутно, что и количественная аномалия, которую мы впервые обнаружили в детской задачке и с которой вновь сталкиваемся во вполне «взрослом» расчете, получает в последнем вполне логичное и доказательное объяснение. Поэтому, несмотря на то, что номинально у нас фигурируют одни и те же единицы, в отличии списочной численности от явочной мы уже не видим никакой ошибки, мы легко соглашаемся с тем, что верны оба результата, но понимаем, что каждый из них справедлив лишь для своего круга условий.
Таким образом, обобщая вывод, который сам собой напрашивается из приведенных примеров, можно сказать, что количественная аномалия, обнаруживаемая в наших расчетах, проступает как строгий индикатор какой-то (возможно, по невнимательности просмотренной нами) «качественной пересортицы». А значит, как строгий индикатор необходимости дальнейшего анализа. Уже отсюда можно сделать вывод о том, что «2+2=4» – это вовсе не запечатленный итог какой-то дискретной операции, но символ никогда не кончаемого процесса. Ведь дополнительный анализ кажущегося конечным результата обнажает перед нами совершенно новый пласт неведомого, который в свою очередь требует внимательного изучения. При этом вполне разумно предположить, что и следующий результат, тот самый, который должен будет пролить свет на этот новый пласт, образует собой лишь очередную ступень для следующего этапа восхождения.
Вглядимся пристальней.
Мы обнаружили, что результат любого сложения, да и любой операции количественного сравнения вообще, в первую очередь отвечает на вопрос: «что» будет?» и только во вторую – на вопрос: «сколько?». При этом «сколько будет?» в значительной мере зависит от того, «что» именно будет. Другими словами, все количественные параметры суммируемых (умножаемых, вычитаемых, делимых) нами свойств конкретных предметов, явлений, процессов будут зависеть от конкретных характеристик именно того нового объединяющего начала, к которому они приводятся. Все это самым непосредственным образом вытекает из того, что универсального «количества», универсальных шкал для измерения всего что угодно, как оказывается, в природе вообще не существует. Любое «количество» всегда строго индивидуально, поскольку нерасторжимо связано со строго определенным «качеством», то есть со строго определенным составом свойств, присущих лишь той или иной группе (виду роду, классу и т.д.) явлений. А значит, пригодно для измерения вещей, относящихся только и только к этим группам (видам, родам, классам и т.д.).
Но если так, то сплошь и рядом должны наблюдаться примеры того, когда трансформация качественной определенности, которая, как мы видели, неизбежна при сложении разнородных вещей, нарушает предсказываемые математикой соотношения. Почему же мы далеко не всегда видим эти нарушения? И не является ли их отсутствие в поле нашего зрения прямым опровержением всего того, о чем говорилось выше?
Впрочем, отсутствуют ли? Может, мы их просто не замечаем? А это уже совсем другое дело, ведь тот факт, что мы их не замечаем, вовсе не значит, что они не существуют вообще. Пример с детской задачкой наглядно подтверждает это. Но подобные ему примеры существуют сплошь и рядом не только в детском мышлении, но и во вполне «взрослой» жизни. Мы постоянно сталкиваемся с ними в нашей практике, но – вот парадокс! – очень часто и в самом деле в упор не видим и как бы проходим сквозь них. Вот, совсем иные иллюстрации, взятые именно их этой «взрослой» реальности. Водород представляет собой горючий газ. Кислород, как известно, хорошо поддерживает горение: в кислородной среде сгорают даже металлы и бетон. Отсюда справедливо было бы ожидать, что их соединение будет создавать какую-то страшно взрывную и опасную смесь. Однако в реальности два атома водорода и один атом кислорода порождают нечто прямо противоположное ожидаемому, а именно – химическое соединение, подавляющее огонь. Другой пример был известен еще нашим далеким предкам. Медь – это очень мягкий металл. Еще более мягкий металл – олово. Но их сплав рождает бронзу, твердость которой через тысячелетия была превзойдена только железом. Мы знаем, что открытие этого парадоксального факта в свое время совершило грандиозную технологическую революцию: еще из школьного курса истории известно о существовании так называемого бронзового века.
Иллюстрации такого рода можно было бы множить и множить. Но почему же тогда выученный в далеком детстве ответ с такой силой давит на наше сознание, что мы способны не замечать даже кричащие факты явного противоречия ему? Почему математические истины представляются нам чем-то незыблемым и универсальным? Почему наше сознание упорно настаивает на том, что результат любого сложения должен соответствовать ему, абсолютно независимо от того, что именно подвергается суммированию? Лошади ли, коровы, египетские ли пирамиды, страховые конторы, солдаты или милиционеры – почему каждый раз мы упорно ищем доказательство того, что итоговая сумма должна быть равна именно и только «четырем», независимо от природы слагаемых вещей? Почему мы всякий раз, несмотря ни на что, видим какой-то скрытый подвох, какой-то изощренный софизм, если не сказать заковыристый кульбит мысли, имеющий целью заставить ее потерять правильную ориентацию, когда нам доказывают что-то противоречащее затверженной истине? Почему в любой количественной аномалии мы склонны видеть только простую ошибку математического расчета и ничего более?
Но вглядимся в существо того, что именно суммируется в этом нисходящем к начальной школе примере.
Как только мы начинаем анализировать процедуру сложения, мы обнаруживаем, что ее результат – это вовсе не врожденная истина, но продукт какого-то очень сложного интеллектуального построения. По существу здесь мы сталкиваемся с примером одного из самых высоких уровней абстрагирования и обобщений. Ведь любые формы классификации явлений окружающего нас мира, которые тяготеют к условному основанию той пирамиды классов, родов, видов, что упоминалась выше, рано или поздно обнаруживают нарушающий строгость построений логический изъян, и этот изъян заставляет нас восходить на следующий уровень обобщений. Мы уже видели: для того, чтобы сложить лошадей и коров, нужно было взойти на уровень каких-то родовых понятий; для того, чтобы сложить домашний скот с пароходами, страховыми конторами или египетскими пирамидами, – на еще более высокую ступень, обобщающую памятники материальной культуры всей нашей цивилизации; чтобы прибавить к ним еще и фортепианные концерты Моцарта, – на следующую вершину абстрагирования, которая объединяет в себе все продукты человеческого творчества вообще… И так далее до самого предела. Но где же именно расположен конечный предел этого восхождения ко все более и более абстрактным понятиям? Что скрывает под собой тот высший уровень обобщений, который уже не может содержать в себе никаких логических изъянов, где уже решительно ничто не способно поставить под сомнение всеобщность и абсолютность результата математического сложения?
Думается, что ответ в конечном счете способен найти каждый, кто уже прошел начальную школу организации мышления. И этот ответ гласит о том, что самоочевидная математическая истина оперирует отнюдь не предметами, не физическими процессами, не реальными явлениями материального мира. Образно говоря, здесь фигурируют лишь некоторые условные, лишенные всякой определенности абсолютно безликие «ниши» нашего собственного сознания – и не более того. В этом смысле наше сознание может быть уподоблено какой-то огромной камере хранения, которая создается на вокзалах: ее одинаковые железные ячейки могут скрывать в себе все, что угодно от нехитрого багажа командированного чиновника до контрабандного наркотика. Каждая из этих «ниш-ячеек» – именно в силу своей пустоты – строго подобна и равна любой другой, и вместе с тем каждая из них способна вместить в себя все, что угодно: корову, страховую контору, фортепианный концерт, дядю Степу, бравого солдата Швейка и так далее. Правда, вместить все это в себя она может только «задним числом», только после выполнения каких бы то ни было операций количественного сравнения. Поэтому на самом деле, обращаясь к математическому расчету, мы складываем отнюдь не физические реалии окружающего нас мира, но всякий раз именно эти ничем не заполненные равновеликие «объемы» нашего сознания, и только получив какой-то результат, наполняем их подручным содержанием. А затем уже начинаем обманывать сами себя, самих себя, уверяя, что мы сложили именно конкретные вещи, которые обладают вполне конкретными характеристиками и свойствами.