Статьи
Статьи читать книгу онлайн
Впервые на русском языке выходит книга статей Николы Теслы — известного изобретателя в области электро- и радиотехники, но вместе с тем, пожалуй, самого загадочного ученого конца XIX — начала XX века. Большая часть статей, составивших сборник, была опубликована при жизни Теслы в разных газетах и журналах США, где он прожил много лет.Читатель знакомится с удивительными опытами и рассуждетаями автора, затрагивающими почти все области человеческой деятельности, в которых прослеживается нетрадиционный взгляд на природные явления.Много тайн оставил после себя Н. Тесла, в которые еще предстоит проникнуть пытливым умам.Книга рассчитана на широкий круг читателей.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Однако, одна или две лампы воздействовали на него очень сильно. Отпечаток руки делали с расстояния около шести футов от лампы при экспозиции меньше минуты, но даже при этом пластина оказалась передержанной. Затем с расстояния 12 футов от конца трубки при пятиминутной экспозиции был сделан отпечаток грудной клетки человека. На проявленной пластине ребра были видны четко, но контуры были нерезкие. Далее, при получении отпечатка грудной клетки помощника на расстоянии четырех футов от лампы была использована трубка с уже описанным цинковым отражателем. При этом эксперименте лампа была излишне деформирована, и ее разорвало из-за большого внутреннего давления в месте пятна бомбардирующих потоков. Такая авария часто случается при слишком сильно деформированных лампах, при этом внешними предвестниками ее являются возросшая активность газа в трубке, который выглядит как пар, и быстрый нагрев самой трубки. По- видимому, вызывающий необычно большой рост внутреннего давления на стеклянную стенку процесс является следствием воздействия, противоположного тому, которое отмечали Крукс и Споттисвуд, и процесс этот очень быстрый. По этой причине экспериментатору необходимо внимательно следить за подобными зловещими сигналами и незамедлительно понижать потенциал. Вследствие безвременной кончины лампы в последнем описанном опыте экспозиция длилась лишь одну минуту. Тем не менее, был получен очень контрастный отпечаток скелета грудной клетки, на котором видны правые и левые ребра и прочие подробности. Но вновь по сравнению с обычным процессом без фосфоресцентного подсвечивающего устройства значительно менее резкими были контуры, хотя флуоресцентная бумага была крепко прижата к пленке. Из предшествующего описания очевидно, что при использовании вышеупомянутых средств для сокращения времени экспозиции толщина объекта не имеет очень большого значения.
При наблюдении за воздействием на флуоресцентный экран из вольфрамата кальция мне пришла в голову еще более интересная мысль о качестве этого химиката. Такого рода экрану вместе с бумажной камерой дали причудливое название "флюороскоп". На самом деле это криптоскоп Сальвиони без объектива, что большой недостаток. Дабы оценить характеристики экрана, необходимо работать по ночам, когда спустя длительное время глаз привыкнет к темноте и приобретет способность замечать на экране слабые эффекты. Однажды качество экрана было особенно замечательным. Его освещали с расстояния 20 футов, но даже с 40 футов я все еще мог различать тусклую тень, проходящую через поле зрения при движении руки перед прибором. Наблюдая примерно с трех футов от лампы просвечивание тела помощника я мог легко различать позвоночный столб в верхней части тела, которая была прозрачнее. В нижней части тела столб и остальное были практически неразличимы. Ребра были лишь едва видны. Отчетливо заметны были кости шеи, и сквозь тело помощника можно было очень легко увидеть квадратную медную пластину, когда ее двигали вверх и вниз перед лампой. При наблюдении сквозь голову видны были только контур черепа и подбородок, хотя поле зрения все еще было ярким. Все-таки все выглядело расплывчатым. Это показывает, что усиление флуоресценции не очень-то много дает при осмотре внутренних частей тела. Скорее решение этой задачи будет найдено после получения очень мощных излучений, способных давать более контрастные теневые изображения. Полагаю, что указал верный путь к достижению результата. Хотя необходимо признать замечательный показатель экрана при использованных мною приспособлениях, тем не менее, я убедился в его ограниченном значении для исследования. Кости конечностей различимы, но не так отчетливо, как на фотографическом отпечатке. Однако, со временем с помощью сильного излучения и хороших отражателей подобные флуоресцентные экраны могут стать ценными инструментами для исследования. Несколько недель назад, когда я наблюдал, как на значительном расстоянии от лампы вспыхивает небольшой экран из цианоплатинита бария, я сказал своим друзьям, что, по- видимому, посредством такого экрана можно будет наблюдать за движущимися по улице объектами. Теперь эта возможность кажется мне намного ближе, чем тогда. Сорок футов — порядочная ширина для улицы, а на таком расстоянии от единственной лампы экран слабо светится. Привожу эту странную мысль только в качестве иллюстрации, насколько научные разработки могут повлиять даже на наши нравы и привычки.
Возможно, вскоре каждый из нас настолько свыкнется с таким положением вещей, что не будет испытывать ни малейшего смущения, сознавая, что бестактные наблюдатели пристально рассматривают его скелет или иные особенности. Флуоресцентные экраны помогают получить представление о рабочем режиме лампы. С помощью подобного экрана, разместив между ним и лампой объектив и меняя фокусное расстояние, я надеялся найти подтверждение преломления. К своему разочарованию, мне не удалось увидеть никаких его признаков, хотя теневое изображение объектива наблюдалось с 20 футов. Также тщетным оказалось применение экрана с целью регистрации эффектов отражения и дифракции.
ИССЛЕДОВАНИЯ РЕНТГЕНОВСКИХ ЛУЧЕЙ
Дальнейшие исследования поведения различных металлов при отражении рентгеновского излучения еще более утвердили меня в высказанной раньше мысли: Вольтов электрический контактный ряд в воздухе идентичен ряду, полученному при ранжировании металлов по их от- ражательной способности, причем наиболее электроположительный металл — наилучший от- ражатель. Ограничусь теми металлами, которые легко поддаются эксперименту. Тогда этот ряд выглядит следующим образом: магний, свинец, олово, железо, медь, серебро, золото и плати- на. Должно оказаться, что последний из перечисленных металлов — наихудший отражатель, а натрий — наилучший. Данное соотношение предстанет еще более интересным и неоднознач- ным, если учесть, что ряд этот примерно совпадает с классификацией металлов по энергиям со- единения с кислородом согласно расчету по их химическим эквивалентам.
Если упомянутую выше связь подтвердят другие физики, то появится основание для сле- дующих выводов: во-первых, сильно возбужденная лампа испускает материальные потоки, ко- торые отражаются при столкновении с металлической поверхностью; во-вторых, эти потоки образуются из материи в ее первичном, или элементарном, состоянии; в-третьих, вероятно, они — тот же фактор, который является причиной электродвижущего напряжения между металлами, находящимися в тесном соседстве или реальном контакте, а возможно, они определяют, до некоторой степени, энергию соединения металлов с кислородом; в-четвертых, каждый металл или проводник — источник подобных потоков в большей или меньшей степени; в-пятых, такие потоки излучений, должно быть, вырабатываются некими излучениями, существующими в сре- де; и, в-шестых, схожие с катодными потоки должны испускаться солнцем, а также, вероятно, иными источниками лучистой энергии, например, дуговой лампой или бунзеновской горелкой.
Первый из этих выводов, — если допустить верность указанного выше факта, — очевиден и неоспорим. Никакая теория колебаний не смогла бы объяснить этой необычной связи между отражающей способностью и электрическими свойствами металлов. Потоки выбрасываемой материи, которая сталкивается с отражающей металлической поверхностью, дают единственное правдоподобное объяснение.
Также очевиден и второй вывод, так как не отмечено никакой разницы при использовании различных видов стекла для лампы, электродов из разных металлов и остаточных газов любого вида. Несомненно, какой бы ни была материя, из которой состоят потоки, она должна претерпевать какое-то изменение в процессе испускания, или, вообще говоря, проецирования (так как взгляды по этому вопросу все еще расходятся), изменение, при котором материя полностью бы утрачивала те характеристики, которыми обладала при формировании электрода, стенки лампы или газового содержимого последней.
Существование связи между рядом коэффициента отражения и вольтовым рядом подтал- кивает нас также и к третьему выводу, потому что простое совпадение подобного рода крайне маловероятно, если не сказать совершенно невероятно. Кроме того, можно напомнить, что все- гда существует разность потенциала между двумя металлическими пластинами, расположенны- ми на некотором расстоянии, и различие в траектории лучей, выходящих из откачанной лампы.