Статьи
Статьи читать книгу онлайн
Впервые на русском языке выходит книга статей Николы Теслы — известного изобретателя в области электро- и радиотехники, но вместе с тем, пожалуй, самого загадочного ученого конца XIX — начала XX века. Большая часть статей, составивших сборник, была опубликована при жизни Теслы в разных газетах и журналах США, где он прожил много лет.Читатель знакомится с удивительными опытами и рассуждетаями автора, затрагивающими почти все области человеческой деятельности, в которых прослеживается нетрадиционный взгляд на природные явления.Много тайн оставил после себя Н. Тесла, в которые еще предстоит проникнуть пытливым умам.Книга рассчитана на широкий круг читателей.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Явное доказательство заключается в том, что подобные отпечатки получены с помощью алюминиевых баллонов в отсутствии фосфоресценции. А что касается анодной или катодной природы, то простой факт получения отпечатков посредством светового разряда, возбуждаемо- го индукцией замкнутого баллона, где нет ни анода, ни катода, по-видимому, эффективно оп- ровергает предположение об испускании потоков только с одного из электродов. Вероятно, уместно указать на простой связанный с индукционной катушкой момент, который может при- вести экспериментатора к ошибке. При подсоединении вакуумной трубки к выводам индукци- онной катушки обе клеммы подвергаются одинаковому воздействию, пока трубка плохо откачана. При высоком разрежении оба электрода практически независимы, а так как они ве- дут себя как тела со значительной емкостью, то следствием этого является неуравновешенность катушки. Если, например, катод очень большой, может значительно возрасти напряжение на аноде, и если анод делают, как часто бывает, маленьким, то плотность электрического тока мо- жет во много раз превышать таковую на катоде. Отсюда очень сильный разогрев анода при, возможно, холодном катоде. Совершенно иное дело, если размеры обоих электродов в точнос- ти одинаковы. Но при описанных выше условиях более горячий анод испускает поток большей интенсивности, чем холодный катод, так как скорость частиц зависит и от плотности электри- ческого тока, и от температуры.
Из предыдущих опытов вытекают также интересные результаты по непроницаемости. На- пример, латунная пластина толщиной одна шестнадцатая дюйма оказалась довольно прозрач- ной, тогда как пластины той же толщины из цинка и меди продемонстрировали полную непроницаемость.
Так как я изучил отражение и получил в этом направлении определенные результаты, то появилась возможность добиться более сильных эффектов за счет подходящих отражателей. Эффект можно существенно усилить, если окружить лампу трубкой из очень толстого стекла. Применение цинкового отражателя однажды дало примерно 40-процентное усиление получен- ного отпечатка. Использованию надлежащих отражателей я отвожу большое практическое зна- чение, потому что с их помощью можно задействовать любое количество ламп и тем самым получать необходимую интенсивность излучения. В ходе исследований меня постигло разоча- рование: полный провал усилий по демонстрации преломления. Использовал линзы всех типов, проводил множество экспериментов, но не смог добиться положительного результата.
К ВОПРОСУ О РЕНТГЕНОВСКОМ ИЗЛУЧЕНИИ*
Обнаружив неожиданное поведение различных металлов при отражении рентгеновских лучей (см. Electrical Review за 1 Апреля 1896 г.), я попытался разобраться с некоторыми все еще сомнительными моментами. Так как на этот раз казалось крайне необходимым установить точный порядок металлов относительно их отражательной способности, то, отложив определение величины эффектов на будущее, я несколько модифицировал прибор и методику, описанные в упомянутой работе. Каждая отражательная пластина выполнена не как прежде из одного металла, а из двух, отражательные способности которых следовало сравнить. Пластины из двух исследуемых металлов крепили на свинцовой пластине таким образом, что отражающую поверхность линия их соединения разделяла на две половины. Кроме того, во избежание распространения и смешивания лучей, отражаемых от обеих половин, толстая свинцовая пластина, установленная посередине свинцовой камеры, разделяла ее на два отделения. Были предприняты меры, чтобы по возможности была однородной плотность падающих на отражающие поверхности лучей, и с этой целью окружающая лампу стеклянная трубка была приподнята так, чтобы выставлялось лишь полусферическое дно лампы. Лампу размещали как можно точнее по центру, чтобы в равной мере подвергать облучению обе половины отражающей пластины.
Так как в предыдущих опытах я по недосмотру не получил результат по железу, я путем сравнения с медью попытался выяснить его положение в ряду, использовав пластину из этих двух металлов. Опыты показали, что железо отражает почти также как медь, но надежно определить этим методом, какой из металлов отражает лучше, было невозможно. Далее, по той же методике я пробовал найти, что лучше отражает: олово или свинец. Выполнил три опыта, и в каждом случае металлы вели себя почти одинаково, но кажется, олово чуть-чуть лучше. И в конце мною были изучены сравнительные свойства магния и цинка. Судя по результатам, магний отражает несколько лучше.
В силу важности данного соотношения металлов я пока не удовлетворен используемой установкой и попытаюсь продумать прибор, который устранит все нынешние недостатки. Обнаружил, что можно сократить время экспозиции до нескольких минут с помощью флуоресцентной бумаги.
В предыдущих сообщениях я лишь намекал о практической важности применения подходящих отражателей. Вероятно, кто-то придет к заключению, что выигрыш, например, от цинкового отражателя будет мал, так как при условиях описанных раннее опытов цинк отражает только три процента падающих лучей. Конечно, это ошибочный вывод.
Прежде всего следует помнить, что в упомянутых прежде примерах угол падения составлял 45 градусов, и что при больших углах будет отражаться более значительная часть лучей.
Точный закон отражения еще надлежит определить. Теперь предположим, что теневое изображение объекта получают на расстоянии D.Чтобы добиться контрастного теневого изображения, это расстояние должно быть не менее двух футов, а я прихожу к все большей и большей необходимости использовать еще большие расстояния. Если ради простоты рассмотреть сферические лампу и электрод, то излучение будет однородным во все стороны, а любой элемент поверхности сферы радиусом D,очерченной вокруг электрода, примет равное количество лучей. Полная поверхность такой сферы равна 4 п D2. Объект, теневое изображение которого следует получить, может иметь небольшую площадь а,на которую из всех испускаемых лучей попадает лишь незначительная часть, определяемая соотношением (a / (44 п D2). В действительности нельзя допускать меньшее, чем (a / (44 п D2), эффективное отношение. Но даже в случае, если Dочень большое, а объект, т. е. площадь (X,мал, отношение (a / (D2 п) может быть столь незначительным, что посредством подходящего отражателя можно сконцентрировать на площади а такое количество лучей, которое в несколько раз превысит количество лучей, попадающих на нее без отражателя. И это при том, что мы можем отражать лишь несколько процентов всех падающих лучей.
В качестве доказательства эффективности такого отражателя представлен снимок плеча и ребер человека. В эксперименте использовали воронкообразный цинковый отражатель высотой два фута с пятидюймовым отверстием в днище и 23-дюймовым в верхней части. Полностью подобную ранее описанным трубку подвешивали в отражателе таким образом, что выше его находился лишь статический экран трубки. Точное расстояние от электрода до чувствительной пластины составляло четыре с половиной фута. Расстояние от конца трубки до пластины — три с половиной фута. Продолжительность экспозиции 40 минут. Все кости: плечо и ребра, были отчетливо видны на пластине, но мне трудно судить, насколько четко они отобразятся на оттиске в журнале. С тем, чтобы лучше продемонстрировать достигнутый прогресс, я выбрал тот же объект, что и в первой по данному исследованию статье в Electrical Review. Наилучшими показателями успеха в этом случае служат расстояние, увеличенное более, чем в два раза, и время экспозиции меньше получаса. Но основное значение отражателя в том, что он позволяет использовать много ламп, не ухудшая точность и четкость изображения, а также в концентрации большого количества излучения на очень маленькой площади.
С тех пор, как два профессора, Генри и Сальвони, предложили использовать фосфоресцирующие или флуоресцирующие вещества применительно к чувствительной пленке, я обнаружил, что сокращение времени экспозиции до нескольких минут или даже секунд — дело несложное. По-видимому, внедренный недавно Эдисоном и выпускаемый господами Эйлсуэртом и Джексоном вольфрамат кальция — пока самое чувствительное вещество. Мною получен и использован в ряде испытаний его образец. Он бесспорно флуоресцирует лучше, чем цианоплатинит бария, но из-за размера кристаллов и неизбежно неровного распределения на бумаге, он не оставляет четкого отпечатка. Для использования применительно к чувствительным пленкам вольфрамат кальция следует размалывать до очень тонкого порошка, и каким-то образом добиваться его равномерного распределения. Для получения достаточно четких контуров также необходимо крепко прижимать бумагу к пленке по всей пластине. Видимо, флуоресценция этого вещества зависит от особого излучения, потому что испытания с несколькими лампами, которые прекрасно работали в иных обстоятельствах, не дали очень хорошего результата, а я едва не получил ложный отпечаток.