Эврика-86
Эврика-86 читать книгу онлайн
В сборнике-ежегоднике «Эврика» рассказывается о важных научных идеях, поисках, решениях минувшего года в нашей стране и за рубежом.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Путь к решению этой задачи открыл так называемый эффект электронного парамагнитного резонанса-ЭПР. Оказалось, что электронное облако атома изучаемого вещества можно «сплющить», наложив на него сильное магнитное поле. И тогда оно будет поглощать радиоволны только какой-то одной частоты, а другие будут проходить через него беспрепятственно. Иными словами, атомы как бы настраивались на прием определенной волны, как колебательный контур в радиоприемнике…
На этом эффекте и были созданы приборы, позволяющие обнаружить ничтожные примеси. В их камеру-резонатор помещали изучаемое вещество и облучали радиоволнами той длины, на которую были «настроены» атомы примесей. По тому, как в результате поглощения падала мощность излучения, и определялось их количество. Беда лишь в том, что этот метод позволял «ловить» примеси в виде отдельных атомов, в лучшем случае-двух- или трехатомных молекул. На более крупные образования его чувствительности уже не хватало. А большинство примесей, интересующих ученых и производственников, представляют собой многоатомные молекулы. Как научиться «опознавать» и их?
За решение этой задачи взялись сотрудники лаборатории химической радиоспектроскопии Института химической физики Академии наук СССР во
главе с профессором Я. Лебедевым. В качестве источника излучения они решили применить лазер, работающий на инфракрасных и субмиллиметровых волнах. Именно в этом диапазоне многоатомные молекулы заявили о себе, что называется, во весь голос. Лазерный спектрометр позволял точно оценить количество не только многоатомных молекул, но и радикалов химически активных «осколков».
— А потом возникла идея объединить преимущество обоих методов лазерного и электронного парамагнитного, — говорит профессор Я. Лебедев. — Она воплотилась в установке, которая позволяет не только определять количество атомов и молекул примеси, но и нагревать лучом лазера всю смесь, любой из ее компонентов или только поверхность вещества. В ней можно разрушать или «штопать» молекулы. И даже прямо воздействовать на химию процесса.
Чувствительность нового прибора фантастическая: он может «поймать» одну молекулу примеси, спрятавшуюся в миллиарде (!) молекул основного вещества. Такое не по силам даже собаке с ее прославленным нюхом.
ЗЕРКАЛА ВМЕСТО ЛУНЫ
Что ни говорите, а в темноте человек чувствует себя не очень уютно. Поэтому и горят миллионы ламп в ночное время всюду, где живут люди. Ученые предлагают использовать для ночного освещения городов зеркала, размещенные на спутниках. Эти спутники должны находиться на
ной орбите, то есть как бы висеть над определенным местом нашей планеты. Зеркала смогут отражать во много раз больше солнечного света, чем Луна. Размер этих зеркал чуть меньше километра в диаметре. С помощью ЭВМ будут управлять их наклоном и тем самым менять освещаемую площадь. Зеркала можно изготовить из пластмассы, покрытой алюминием, и выводить в сложенном виде на орбиту на борту космического корабля. После отделения от корабля зеркала раскроются как зонтики. Правда, перед тем, как приступить к осуществлению проекта, необходимо изучить возможные влияния такого освещения на человека и животных, чем сейчас и занимаются ученые.
ГЕМОГЛОБИНОВАЯ ГУБКА
Изобретены искусственные подводные легкие для получения из морской воды кислорода. Прибор, получивший название «гемоспандж» (в дословном переводе — "гемоглобиновая губка"), представляет собой полимер, пропитанный молекулами гемоглобина, то есть красного дыхательного пигмента крови, который связывает кислород и переносит его от органов дыхания к тканям. Гемоспандж, как и губка, обладает очень большой поверхностью, поэтому значительное количество гемоглобина приходит в соприкосновение с протекающей через прибор водой. Расчеты показывают, что труба диаметром около метра и длиною девять метров, наполненная гемоспанджем, может под водой обеспечить кислородом 150 человек.
АЛЮМИНИЙ ДЛЯ СЕЛА
Рассказывает академик А. Белов
ФАНТАСТИЧЕСКИЙ РОСТ
Значительную часть своих сил наш Всесоюзный институт легких сплавов направляет на создание совершенных технологий получения и обработки алюминия, изыскание наиболее эффективных областей и способов применения его в народном хозяйстве.
1986 год — год 100-летия алюминия как промышленного металла. Уместно в связи с этим напомнить некоторые факты из истории его применения.
В свободном виде алюминий был получен в 1825 году. И в течение почти 60 лет он оставался редким, драгоценным металлом, не имеющим никакого промышленного применения. Так, в 1854–1855 годах было изготовлено всего 25 килограммов алюминия по цене около 45 рублей золотом за килограмм. Лишь с 1886 года, когда одновременно и независимо друг от друга французский металлург П. Эру и американский физик Ч. Холл предложили способ получения алюминия электролизом криолитно-глиноземных расплавов, начало развиваться его промышленное производство. Уже в 1890 году было получено несколько сотен тонн алюминия. К настоящему времени годовой выпуск его в мире увеличился в 75 тысяч раз! История не знает таких темпов вторжения в жизнь какого-либо другого промышленного металла. По объему производства алюминий сегодня занимает второе место
после стали. Но можно предположить, что, когда удастся полностью решить энергетическую проблему и энергия перестанет быть дефицитной, алюминий выйдет на первое место и возьмет на себя роль главного металла цивилизации. К тому есть ряд оснований.
Начнем с того, что запасы алюминия практически неисчерпаемы: по распространенности в природе он занимает третье место среди всех элементов и первое среди металлов — 8,8 процента от массы земной коры; это примерно в 2 раза больше, чем железа, и в 2500 раз больше, чем меди.
Сплавы на основе алюминия, которые содержат 4–6 процентов легирующих элементов, обладают замечательными физическими и механическими свойствами (в дальнейшем для краткости будем говорить «алюминий», имея в виду его различные сплавы). Малая плотность у них сочетается с высокой прочностью. Благодаря этому по удельной прочности (отношение прочности материала к его плотности) они раз в пять превосходят конструкционную сталь. Именно поэтому алюминий стал одним из основных конструкционных материалов, применение которого позволяет значительно уменьшить массу изделия. Естественно, что первой и главной областью, где алюминий оказался вне конкуренции, стала авиация. Затем его начали использовать в ракетостроении, а в последние годы, когда в транспортном машиностроении повышению весовой отдачи конструкции на единицу затрачиваемой энергии двигателя стало придаваться все большее значение, и в производстве автомобилей, тракторов, вагонов.
От других металлов и сплавов, имеющих высокие механические свойства, алюминий выгодно отличается тем, что очень хорошо обрабатывается давлением, резанием. Например, в результате только одной операции прессования удается получить любую форму профиля — точного по размерам,
сткого, прочного и экономичного. Использование профилей из алюминиезых сплавов открыло перед строителями возможность создания оптимальных конструкций стеновых панелей, подвесных потолков, дверных блоков, оконных рам и других элементов. Такие конструкции легки, прочны, стоимость сборочных работ минимальна; алюминию с помощью электрохимической и других видов обработки легко придать декоративный вид. Все это в сочетании с высокой коррозионной стойкостью и долговечностью алюминия определило его широкое применение в строительстве. Ныне в мире для этих целей ежегодно расходуется более 2 миллионов тонн алюминия.
ПОТЕРИ ПРОДУКЦИИ — ДО МИНИМУМА
В последние годы алюминий стал интенсивно использоваться и в различных сферах агропромышленного комплекса. В отношении санитарных норм и некоторых других специфических требований, предъявляемых к конструкционным материалам, он оказался здесь самым подходящим. Алюминий устойчив к воздействию воды, солнца; он не только гигиеничен и нетоксичен (мы ведь без опасения пользуемся алюминиевой посудой), но и легко дезинфицируется и при этом не подвергается коррозии.