-->

Космические методы в океанологии

На нашем литературном портале можно бесплатно читать книгу Космические методы в океанологии, Большаков Анатолий Александрович-- . Жанр: Прочая научная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Космические методы в океанологии
Название: Космические методы в океанологии
Дата добавления: 16 январь 2020
Количество просмотров: 231
Читать онлайн

Космические методы в океанологии читать книгу онлайн

Космические методы в океанологии - читать бесплатно онлайн , автор Большаков Анатолий Александрович

В последние годы все большее место в космических программах отводится исследованиям Земли из космоса как со специализированных спутников, так и с борта пилотируемых орбитальных станций. Среди широкого комплекса методов космического зондирования Земли важную роль играют методы по изучению Мирового океана. Об этом и рассказывается в данной брошюре.

Брошюра рассчитана на широкий круг читателей, интересующихся прикладными аспектами космонавтики.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 4 5 6 7 8 9 10 11 12 ... 16 ВПЕРЕД
Перейти на страницу:

Советскими учеными предложены некоторые другие методы обработки данных спутниковых инфракрасных измерений, в частности, метод оптимальной интерполяции, учитывающий статистические свойства поля температуры поверхности Мирового океана. Этот метод позволяет исключить как влияние шумов аппаратуры, так и влияние облачности, но, кроме того, в отличие от метода гистограмм, не приводит к ухудшению пространственного разрешения обрабатываемой информации.

В последние годы проведен ряд теоретических и экспериментальных работ по повышению точности перехода от радиационной к термодинамической температуре океанской поверхности. В частности, ведутся работы по созданию модели поведения поверхностного слоя океана при различных гидрометеоусловиях. Большие перспективы связываются также с разработкой многозональных методов инфракрасных измерений, позволяющих экспериментальным путем определять параметры холодной пленки.

Теоретической основой для разработки многозональных методов является то, что эффективная толщина излучающей пленки для каждой длины волны различна. Поэтому, используя одновременные измерения интенсивности радиации океанской поверхности в нескольких узких интервалах, можно оценить величину перепада температур в поверхностном слое океана и учесть ее при обработке данных дистанционных измерений.

Так, совместная обработка двухканальных измерений температуры Мирового океана, проведенных с помощью ИСЗ «НОАА-6», позволила намного повысить точность определения термодинамической температуры океана. Например, сравнение спутниковых данных с результатами синхронных контактных измерений температуры поверхностного слоя океана, выполненных на одном из подспутниковых полигонов (исследуемой области) в Атлантическом океане, показало, что среднеквадратичное отклонение между контактными и спутниковыми измерениями составило 0,56 К при изменениях температуры поверхностного слоя от 1 до 27 °C. Такие точности дистанционного измерения температуры океанской поверхности с помощью радиометров инфракрасного диапазона являются уже вполне удовлетворительными и позволяют решать многие практические задачи.

Использование инфракрасной аппаратуры, установленной на различных ИСЗ, способствовало получению ряда важных для океанологии результатов. В 1971 − 1973 гг. американскими специалистами была исследована динамика течения Гольфстрим на основании данных радиометров ИСЗ «НОАА». На многих полученных за это время инфракрасных изображениях Атлантического океана хорошо видны границы этого течения, изгибы его оси (меандры), вихри и другие характерные образования. Результаты наблюдений за западной частью Саргассова моря показали, что вихри в этом районе образуются у мыса Гаттерас и перемещаются в юго-западном направлении со средней скоростью около 1,5 км в сутки. Выяснилось, что вихри поглощаются Гольфстримом в районе полуострова Флорида, а среднее время жизни вихрей − около двух лет.

На борту геостационарного метеорологического ИСЗ «СМС-1» была установлена сканирующая аппаратура, с помощью которой каждые 30 мин на Землю передавалось изображение Центральной Атлантики в видимом и тепловом инфракрасном диапазонах спектра. Ряд последовательных изображений океана в инфракрасном диапазоне был смонтирован в виде кадров обычного кинофильма, что позволило наглядно наблюдать зарождение и перемещение вихрей вдоль западной границы Гольфстрима у полуострова Флорида.

По данным инфракрасных радиометров ИСЗ серии «НОАА», в Центральной Атлантике и других районах Мирового океана обнаружился ряд неизвестных ранее зон апвеллинга, т. е. зон подъема глубинных вод, богатых питательными веществами.

Особенно успешно данные спутниковых радиометров инфракрасного диапазона используются при проведении океанографических экспериментов в так называемом квазиреальном времени. В этих экспериментах данные съемки поверхности Мирового океана с помощью инфракрасных радиометров передаются непосредственно на НИС, где обрабатываются и используются для наведения НИС в заданный район, например, в центр океанического вихря.

Начиная с 1973 г. осуществляется полностью автоматизированная обработка данных, поступающих с радиометров ИСЗ серии «НОАА». Спутниковые данные передаются на две наземные приемные станции, а далее информация через обычные каналы связи транслируется в центр ее обработки, где поступает на ЭВМ. Конечным продуктом обработки являются ежесуточные карты температуры поверхности Мирового океана в глобальном масштабе. Точность определения температуры в этой системе составляет около 1,5 К.

По оценкам многих специалистов, в ближайшем будущем реально ожидать повышения точности в определении температуры океанской поверхности с помощью установленных на ИСЗ радиометров до величин 0,2 − 0,5 К. Пространственное разрешение получаемой при этом информации будет порядка нескольких сот метров, а периодичность ее получения − до нескольких раз в сутки. С учетом таких перспектив радиометры инфракрасного диапазона планируется устанавливать на всех разрабатываемых океанологических ИСЗ.

В настоящее время успешно идут эксперименты по созданию инфракрасных лазеров (например, газовых лазеров, работающих на углекислом газе и имеющих излучение с длиной волны 10,6 мкм). С помощью этих приборов, установленных на самолетах, хорошо определяется загрязнение океана нефтепродуктами и решаются некоторые другие задачи, интересующие океанологов. Эти эксперименты показывают, что приборы подобного класса подходят для дистанционных исследований Мирового океана и в принципе возможна их установка на борту ИСЗ. Тогда и в инфракрасном диапазоне можно будет проводить активное зондирование океана.

В заключение этого раздела отметим, что информация инфракрасного, как и видимого, диапазона, получаемая даже в глобальном масштабе, имеет фрагментарный характер из-за покрытия многих районов Мирового океана плотной облачностью и туманом. Глобальное изучение океана без пропусков возможно только при использовании волн радиодиапазона.

РАДИОФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ОКЕАНА ИЗ КОСМОСА

Радиофизические методы исследования Мирового океана из космоса, включая и исследования атмосферы над океаном, проводятся в микроволновом или, иначе говоря, в сверхвысокочастотном (СВЧ) диапазоне спектра на радиоволнах с длиной от нескольких миллиметров до нескольких дециметров. Формирование собственного теплового излучения океана или отраженного его поверхностью определяется в радиодиапазоне обширным комплексом гидрофизических параметров, что позволяет в ряде случаев получать информацию, которую трудно или просто невозможно добыть при зондировании океана в оптическом диапазоне спектра.

Прозрачность земной атмосферы в радиодиапазоне велика, причем относительно прозрачна даже облачная атмосфера. Это позволяет с помощью радиометодов проводить исследования там, где трудно или просто невозможно использовать оптические методы. Конечно, в той или иной мере атмосфера Земли и в этом диапазоне влияет на излучение поверхности океана, регистрируемое на борту КА, однако в ряде случаев это влияние невелико и его можно учесть. По сравнению с видимым и инфракрасным диапазонами спектра, влияние атмосферы в радиодиапазоне значительно меньше, и передаточная функция атмосферы значительно ближе к единице.

Так, по данным одной из экспериментальных работ, выполненных советскими учеными, в области длин волн около 0,8 см совершенно непрозрачный для волн оптического диапазона плотный слой кучевых облаков толщиной около 1,5 км над акваторией Азовского моря приводил к изменению так называемой радиояркостной температуры морской поверхности на 20 − 25 К. При переходе же к волнам с длиной волны 3,2 см вклад атмосферы еще более уменьшался, и ошибка измерения радиояркостной температуры моря, определяемая атмосферой, уменьшалась до 3 К, т. е. не превышала 1 − 2 %.

Общая тенденция здесь такова: более длинноволновое излучение океана свободнее проходит сквозь атмосферу, не ослабевая, и его целесообразней использовать при изучении Мирового океана из космоса. В то же время исследования в коротковолновой миллиметровой области спектра позволяют судить о водности облаков в приводном слое атмосферы, определять количество водяного пара, выделять районы осадков и решать другие задачи, связанные с комплексным исследованием процессов, протекающих в системе океан − атмосфера.

1 ... 4 5 6 7 8 9 10 11 12 ... 16 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название