-->

Космические методы в океанологии

На нашем литературном портале можно бесплатно читать книгу Космические методы в океанологии, Большаков Анатолий Александрович-- . Жанр: Прочая научная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Космические методы в океанологии
Название: Космические методы в океанологии
Дата добавления: 16 январь 2020
Количество просмотров: 231
Читать онлайн

Космические методы в океанологии читать книгу онлайн

Космические методы в океанологии - читать бесплатно онлайн , автор Большаков Анатолий Александрович

В последние годы все большее место в космических программах отводится исследованиям Земли из космоса как со специализированных спутников, так и с борта пилотируемых орбитальных станций. Среди широкого комплекса методов космического зондирования Земли важную роль играют методы по изучению Мирового океана. Об этом и рассказывается в данной брошюре.

Брошюра рассчитана на широкий круг читателей, интересующихся прикладными аспектами космонавтики.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 3 4 5 6 7 8 9 10 11 ... 16 ВПЕРЕД
Перейти на страницу:

ИССЛЕДОВАНИЯ ОКЕАНА ИЗ КОСМОСА В ТЕПЛОВОМ ИНФРАКРАСНОМ ДИАПАЗОНЕ СПЕКТРА

В тепловом инфракрасном диапазоне спектра имеется два «окна прозрачности» атмосферы − в интервалах длин волн 3 − 5 и 8 − 13 мкм, где также можно проводить космические исследования Мирового океана. В первом из этих «окон» собственное тепловое излучение океана соизмеримо по интенсивности с отраженным солнечным, поэтому измерения температуры океана должны производиться только на теневой стороне орбиты. Во втором «окне» отраженная солнечная радиация практически отсутствует, и Тепловые измерения не зависят от условий освещенности поверхности Земли Солнцем.

Прозрачность атмосферы в этих «окнах» довольно высока, но при точных температурных измерениях требуется учитывать и поглощение излучения атмосферой Земли. Для точного определения передаточной функции атмосферы необходимо знать вертикальные профили (распределение с высотой) температуры и влажности воздуха, а также вертикальное распределение и оптические характеристики аэрозоля (облачности). Точная оценка этих величин возможна только с привлечением дополнительных данных зондирования атмосферы в видимом, ближнем инфракрасном и микроволновом диапазонах спектра. Для приближенных расчетов температуры подстилающей поверхности можно обойтись и простыми оценками атмосферных помех.

Набор гидрофизических параметров, определяемых при зондировании Мирового океана из космоса в этой области спектра, весьма ограничен, но зато среди них находится один параметр, представляющий большое практическое значение, − температура поверхностного слоя океана.

Точное знание о распределении этой температуры позволяет определять границы океанских течений, положение фронтальных зон, следить за перемещениями океанических мезомасштабных вихрей, находить районы повышенной биопродуктивности, оценивать взаимодействие океана и атмосферы и решать ряд других важных задач.

Информацию о температуре поверхностного слоя океана несет инфракрасное тепловое излучение его поверхности, интенсивность которого связана с обычной (термодинамической) температурой известным законом Стефана−Больцмана. Поскольку эту интенсивность можно измерить с помощью установленной на борту ИСЗ аппаратуры, то, следовательно, таким образом можно определить и температуру океана. Основными приборами, спроектированными для исследования Мирового океана в тепловом инфракрасном диапазоне, являются сканирующие радиометры, с помощью которых получают информацию о температуре поверхности океана в удобном и наглядном виде.

По принципу действия сканирующие радиометры инфракрасного диапазона аналогичны обычным сканирующим приборам видимого диапазона, описанным ранее, и в последнее время их зачастую конструктивно объединяют в один прибор. Принятые на Земле сигналы спутниковых инфракрасных радиометров преобразуют в специальных устройствах в интенсивность источников света, с помощью которых на обычной черно-белой фотопленке регистрируется температура океана. Таким образом, космическая радиометрическая информация данного диапазона по внешнему виду соответствует обычной черно-белой космической фотографии, и на ней различными оттенками серого тона выделены участки Мирового океана, имеющие различную температуру поверхности (пример подобных изображений показан на последней странице обложки).

Подобный метод представления данных термического зондирования позволяет быстро строить карты температуры поверхности Мирового океана с дискретностью по температуре порядке 1 − 3 К. Для получения более детальных данных информация, поступающая с радиометров, может быть обработана на ЭВМ и представлена в любом удобном для дальнейшего использования виде.

Основными проблемами, возникающими при обработке радиометрической информации, являются проблемы устранения атмосферных помех и проблемы приведения информации к виду, удобному и привычному для океанологов. Дело в том, что океанологи за температуру поверхностного слоя океана принимают термодинамическую температуру воды, измеренную с помощью ртутного или другого контактного термометра на вполне определенной глубине (0,5 м). А радиометры инфракрасного диапазона измеряют радиационную температуру тонкой излучающей поверхностной пленки (скинслоя, или пограничного слоя, или холодной пленки), толщина которой не превышает нескольких десятков микрометров. Но, как показали точные измерения, в тонком, толщиной всего несколько сантиметров, пограничном слое океана имеется всегда положительный или отрицательный перепад температур, достигающий, в зависимости от различных гидрометеоусловий, величины 2 − 3 К (рис. 6).

Таким образом, даже в идеальном случае, т. е. при отсутствии атмосферных помех, всегда наблюдается разница между показаниями обычного термометра, опущенного на глубину 0,5 м, и показаниями радиометра, измеряющего температуру поверхностной пленки толщиной несколько микрометров. Кроме того, при интерпретации данных дистанционного зондирования необходимо учитывать, что спутниковые измерения соответствуют интегральному потоку с некоторой площади, а традиционные измерения с помощью контактного термометра проводятся в одной точке, и это также может быть источником рассогласования в показаниях приборов.

Часто эту естественную разницу температур принимают за ошибку метода и говорят о низкой точности космической инфракрасной радиометрии, что совершенно неверно. Космические радиометры позволяют измерять радиационную температуру подстилающей поверхности с точностью до 0,1 К, и именно такая величина должна рассматриваться в качестве меры точности для космических инфракрасных методов измерения температуры океана. Влияние атмосферы и облачности при этом можно учитывать с помощью калибровки данных по измерениям на тестовых участках, а также применяя специальные методы обработки результатов дистанционного зондирования.

Космические методы в океанологии - img_8.png

Рис. 6. Изменения температуры воды в поверхностном слое океана при различных условиях

Одним из таких методов является метод гистограмм, впервые использовавшийся при обработке данных радиометров высокого разрешения, установленных на борту ИСЗ серии «Нимбус». В этом методе вся информация радиометров инфракрасного диапазона разбивается на небольшие массивы, соответствующие областям Мирового океана размером 2,5 × 2,5° по широте и долготе. Далее в пределах каждого массива данных строится гистограмма распределения интенсивности сигналов радиометра от каждого элемента изображения. Если при этом в какой-то момент времени в поле зрения радиометра попадает облачность, то последнее приводит к снижению интенсивности выходного сигнала радиометра, поскольку температура облаков значительно ниже температуры океана. Образцы полученных таким образом гистограмм и приведены на рис. 7.

«Холодные» фронты этих гистограмм сильно растянуты и не годятся для определения температуры океана. Для решения этой задачи лучше всего подходят «теплые» участки гистограмм. Предварительный анализ ошибок измерений показал, что формы этих участков определяются только аппаратурными шумами радиометров, которые можно определить при наземных испытаниях прибора (до запуска на орбиту). Среднеквадратичная величина шума радиометра ИСЗ «Нимбус» была известна и составляла 1,5 К.

С учетом этих данных температура поверхности Океана может быть определена как температура точки максимального наклона кривой на «теплом» участке гистограммы минус среднеквадратичная величина шума радиометра. Таким образом, для обеих гистограмм измеренная радиометром температура поверхности океана составляет 301 К. В настоящее время этот метод широко используется для построения карт температуры поверхности Мирового океана, определенных по спутниковым данным.

Космические методы в океанологии - img_9.png

Рис. 7. Гистограммы распределения температуры поверхности двух районов океана по данным ИК аппаратуры ИСЗ «Нимбус-3»

1 ... 3 4 5 6 7 8 9 10 11 ... 16 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название