Разведка далеких планет
Разведка далеких планет читать книгу онлайн
Мечта каждого астронома – открыть новую планету. Раньше это случалось редко: одна-две за столетие. Но в последнее время планеты открывают часто: примерно по одной большой планете в неделю, ну а мелких – по сотне за ночь! В книге рассказано о том, как велись и ведутся поиски больших и маленьких планет в Солнечной системе и вдали от нее, какая техника для этого используется, что помогает и что мешает астрономам в этой работе. Рассказано, как дают планетам имена и какие открытия ждут нас впереди. В приложении приведены точные данные о планетах, созвездиях и крупнейших телескопах.
Книга предназначена старшеклассникам, учителям и студентам, а также всем любителям астрономии.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Но, пожалуй, еще более грандиозная идея – использовать всю Землю целиком в качестве телескопа. Планета Земля может служить детектором самого экзотического вида излучения – гравитационных волн.
Рис. 5.8. Схема регистрации гравитационных волн, в которой используется специальный сейсмометр, фиксирующий колебания земного шара.
В поле гравитационного излучения Земля в простейшем случае должна деформироваться в эллипсоид, вытянутый перпендикулярно направлению приходящей волны, причем степень вытянутости изменяется с частотой приходящего гравитационного излучения. В результате в теле Земли будут возбуждаться сейсмические колебания. В принципе такие же колебания должны возбуждаться и в лабораторных твердотельных детекторах гравитационных волн. Это, как правило, металлические болванки массой около тонны, снабженные чувствительными датчиками колебаний. Наилучшим образом такие детекторы откликаются на ту гравитационную волну, частота которой совпадает с частотой собственных колебаний болванки: для лабораторных детекторов это звуковые частоты (1 Гц – 10 кГц), для Земли – инфразвуковые (0,1-10 Гц), что интереснее с точки зрения астрофизики. Регистрируя колебания земной поверхности специальным сейсмометром, исследователи надеются обнаружить гравитационное излучение пульсаров и вращающихся белых карликов. Уже четверть века в различных районах Земли ставятся такие эксперименты. За это время чувствительность аппаратуры была повышена в тысячи раз, но пока на фоне сейсмических шумов не удалось выделить колебаний с периодами, близкими или кратными периодам известных пульсаров. Были даже попытки поставить аналогичный эксперимент на Луне, куда участники экспедиций «Аполлон» доставили сейсмометры. Но эти попытки закончились безрезультатно.
Впрочем, астрофизики постоянно пытаются приспособить Луну для изучения космоса. Ее роль при исследовании Солнца и звезд мы уже обсуждали, но и нейтринная астрономия тоже приглядывается к Луне. Пролетая сквозь планету или ее спутник, высокоэнергичное нейтрино может родить ливень вторичных заряженных частиц, которые, как мы знаем, испускают в среде черенковское излучение, причем не только оптическое, но и радио. Если оптические черенковские вспышки можно заметить только в прозрачной среде (воздух, вода), то радиоволны могут выходить из глубин планеты. Кстати, этот метод регистрации нейтрино тоже предложил Г. А. Аскарьян еще в 1961 г. Для генерации черенковского радиоизлучения прекрасно подходит Луна, особенно ее обратная сторона – заповедное место в смысле радиопомех. Но наземным радиотелескопам обратная сторона Луны не видна. Поэтому исходящее оттуда излучение должен регистрировать спутник на окололунной орбите, снабженный чувствительными радиоантеннами. Вот такой нейтринный телескоп получается: даже не планета, а спутник (Луна) + спутник спутника.
А теперь вернемся к Луне в роли гравитационной антенны. Если пока Луну в этой роли не удается использовать «соло», то почему бы не создать дуэт «Земля – Луна»? При прохождении гравитационной волны между свободными телами периодически меняется расстояние. При этом чем больше расстояние, тем сильнее оно меняется. Гравитационная антенна «Земля – Луна» отлично подходит для регистрации длинноволнового гравитационного излучения с периодом колебаний около 2–3 секунд. Для этого нужно точно измерять расстояние между центрами Земли и Луны. Такие измерения осуществляются методом лазерной локации с использованием уголковых отражателей, доставленных на поверхность Луны советскими и американскими космическими аппаратами. Достигнутая при этом точность – около
1 см – пока недостаточна для целей гравитационноволновой астрономии, но можно надеяться, что переход от локации к лазерной интерферометрии резко повысит чувствительность гравитационной антенны «Земля – Луна», так как интерферометр способен почувствовать изменение расстояния в несколько ангстрем.
Мертвая звезда – генератор стандартных сигналов
Астрофизики предлагают все новые способы «поймать» гравитационное излучение. На помощь призваны радиопульсары как источники импульсов строго постоянной частоты. Идея проста. Представьте себе, что где-то на пути от пульсара к Земле находится источник гравитационного излучения, например тесная двойная звезда. Тогда свойства пространства в этой области не остаются неизменными, ведь гравитационная волна – это и есть периодическое изменение свойств пространства-времени! Радиосигналу пульсара понадобится то чуть больше, то чуть меньше времени, чтобы достичь Земли.
Рис. 5.9. Гравитационное излучение тесной двойной звезды можно обнаружить, исследуя радиоизлучение пульсара, расположенного от наблюдателя дальше, чем двойная система.
Радиоастрономы в принципе могли бы заметить такие периодические изменения в моментах прихода импульсов и сравнить их период с периодом обращения тесной двойной звезды. При совпадении этих двух периодов можно констатировать наличие гравитационных волн в пространстве между пульсаром и Землей.
К сожалению, на пути осуществления такого эксперимента много трудностей. Межзвездное и межпланетное пространство заполнено движущейся неоднородной плазмой, которая преломляет радиоволны и непредсказуемо задерживает их приход на Землю. Правда, мы знаем, что периодическую компоненту, связанную с гравитационным излучением, можно выделить на фоне даже очень сильных шумов, но для этого нужны длительные прецизионные наблюдения.
Уникальный «прибор» для гравитационно-волновых экспериментов создан самой природой. Это тесная двойная система, состоящая из нейтронных звезд, одна из которых – радиопульсар PSR В1913+16. С тех пор как в 1993 г. за изучение этой системы Нобелевскую премию по физике получили Р. А. Халс и Дж. X. Тейлор (Принстонский университет), этот объект называют не иначе как «двойной пульсар Халса – Тейлора». Период обращения нейтронных звезд в этой системе составляет 7 ч 45 мин, но он меняется: в результате излучения гравитационных волн орбитальный период уменьшается на 76,5 мкс в год. Соответственно уменьшается и большая полуось орбиты – на 3,5 м в год. Заметить это удалось, измеряя частоту прихода радиоимпульсов от пульсара, который в данном случае служит «генератором стандартных сигналов». Эта работа была так высоко оценена именно потому, что впервые косвенно подтвердила существование гравитационных волн в полном согласии с прогнозом общей теории относительности. Конечно, нейтронные звезды – это не планеты, о которых мы здесь говорим, но важен принцип: астрономические приборы не только изготавливаются руками, но и обнаруживаются среди естественных объектов.
Гравитационная фокусировка
До сих пор мы рассматривали принципы детектирования гравитационных волн с помощью небесных тел, но было бы хорошо научиться фокусировать эти волны, создавая высокую плотность гравитационного излучения в некоторой точке пространства – в фокусе. Разумеется, поскольку волны гравитационные, то и фокусирующая их линза тоже должна быть гравитационной. Такой линзой может служить любое массивное тело.
Гравитационная линза универсальна: она фокусирует все виды излучения и потоки любых частиц, ведь гравитационному взаимодействию подвержены все материальные объекты. Принципиальная возможность создания такой линзы была доказана в 1919 г., когда под руководством А. Эддингтона во время полного солнечного затмения измерили отклонение лучей света звезд, наблюдавшихся недалеко от края Солнца. Оправдалось предсказание А. Эйнштейна, что лучи света, проходящие вблизи солнечного края, отклоняются на 1,75″ (под таким углом мы видим толщину спички с расстояния 200 м). Зная эту величину, даже школьник может вычислить, что отклоненные Солнцем лучи соберутся в фокусе, расположенном на расстоянии 550 а. е. от светила – в 18 раз дальше орбиты Нептуна. Поток излучения в фокусе такой гравитационной линзы, как Солнце, усиливается всего в несколько раз. Солнце и любой другой одиночный массивный объект – плохая гравитационная линза, так как обладает сильнейшей аберрацией. У этой линзы нет одной точки фокуса, где собирались бы все параллельно падающие на нее лучи: чем дальше проходят лучи от поверхности Солнца, тем больше для них фокусное расстояние.