Разведка далеких планет
Разведка далеких планет читать книгу онлайн
Мечта каждого астронома – открыть новую планету. Раньше это случалось редко: одна-две за столетие. Но в последнее время планеты открывают часто: примерно по одной большой планете в неделю, ну а мелких – по сотне за ночь! В книге рассказано о том, как велись и ведутся поиски больших и маленьких планет в Солнечной системе и вдали от нее, какая техника для этого используется, что помогает и что мешает астрономам в этой работе. Рассказано, как дают планетам имена и какие открытия ждут нас впереди. В приложении приведены точные данные о планетах, созвездиях и крупнейших телескопах.
Книга предназначена старшеклассникам, учителям и студентам, а также всем любителям астрономии.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Рис. 5.2. Момент контакта во время покрытия Венеры диском Луны. Фото: Philippe Tosi.
Методом лунных покрытий определяют диаметры астероидов, планет и звезд, открывают и исследуют тесные двойные звезды и даже изучают распределение яркости на дисках некоторых звезд. Сейчас этот метод очень популярен и доступен даже любителям астрономии [5]. Правда, такие наблюдения возможны лишь в тех местах на небе, где бывает Луна: для земного наблюдателя – в полосе шириной около 12° вдоль эклиптики.
У метода лунных покрытий есть и недостатки. Во-первых, дифракция света на краю лунного диска приводит к искривлению световых лучей. Даже точечный источник, когда на него надвигается лунный диск, исчезает не сразу, а предварительно испытав несколько возрастающих по амплитуде колебаний яркости. Исключают эти эффекты математическими методами, сравнивая с наблюдаемой картиной изменения яркости кривые, рассчитанные для источников различного углового диаметра.
Второй недостаток данного метода в том, что одно лунное покрытие – это всего лишь один «скан», дающий одномерное распределение яркости источника. Но если наблюдать несколько покрытий одного и того же источника, то можно получить набор одномерных профилей яркости с разными углами сканирования. Дело в том, что Луна движется очень сложно и никогда не повторяет в точности своего пути. По этому набору сканов несложно восстановить двумерную картину распределения яркости.
Покрытия Луной используются для исследований не только в оптическом диапазоне: чрезвычайно широкое применение в свое время нашел этот метод в рентгеновской астрономии, приборы которой поначалу обладали очень низким угловым разрешением. В 1963 г. рентгеновские детекторы имели угловое разрешение несколько градусов, поэтому московский астрофизик И. С. Шкловский предложил исследовать рентгеновский источник в созвездии Телец в то время, когда его постепенно закрывала Луна. Эксперимент был проведен: в результате источник отождествили с Крабовидной туманностью и определили его размер – около 1′, что было в сотни раз меньше разрешающей способности рентгеновского детектора.
Рис. 5.3. Кривые блеска звезды IRC+00233 на длинах волн 2 и 4 микрона в момент ее покрытия Луной. Крестики – данные наблюдений. Сплошная кривая – теоретическая модель для звезды углового размера 0,0045″. Колебания блеска вызваны эффектом дифракции света на краю лунного диска: чем меньше угловой размер звезды, тем сильнее дифракционные колебания блеска. Из работы Р. М. Harvey, A. Oldag (Техасский университет), 2007 г.
Особенно тесно рентгеновские источники расположены на небе в направлении галактического центра. К счастью, через этот район время от времени проходит Луна. В 1971 г. в ходе ракетного эксперимента удалось определить координаты близкого к галактическому центру рентгеновского источника GX3+1 с точностью 25″х1″. Рентгеновским телескопам такая точность стала доступна лишь в конце 1970-х гг.
А еще раньше, в 1950-е гг., аналогичная ситуация сложилась в радиоастрономии. В то время радиотелескопы в метровом диапазоне имели угловое разрешение около 10°. Поэтому радиоастрономы часто использовали методы лунных покрытий для определения точных координат источников. В наше время на радиоинтерферометрах достигнута фантастическая разрешающая способность – 0,0001″, но Луна по-прежнему остается в арсенале радиоастрономов. Например, в последние годы при наблюдении радиоизлучения межзвездных молекул метод лунных покрытий позволил детально исследовать ядро нашей Галактики.
Начиная с 1973 г. Луна стала выступать в новой роли: американский радиоастрономический спутник «Эксплорер-49», выйдя на окололунную орбиту, развернул 230-метровые антенны и приступил к исследованию низкочастотного радиоизлучения Солнца, Юпитера и других объектов, закрываясь с помощью Луны от радиошумов земного происхождения. Заметим, что при наблюдении с борта искусственных спутников Земли и Луны метод лунных покрытий удается распространить практически на все небо. Первый опыт работы в радиотени Луны оказался удачным, и теперь радиоастрономы готовятся к созданию постоянной обсерватории на обратной стороне Луны. Впрочем, я опасаюсь, что пока эта обсерватория будет создана, наши музыкальные радиостанции доберутся и до обратной стороны Луны.
Итак, Луна отлично исполняет роль заслонки. А на что еще она годится? В следующем разделе мы узнаем, что Луна – подходящая мишень для нейтрино; вполне вероятно, что скоро она будет использована в этом амплуа. А недавно у нее появилась еще одна роль: Луну можно использовать как зеркало. Мы не имеем в виду любительскую радиосвязь «через Луну», когда принимаются отраженные от нее радиоволны: это интересно, но не имеет отношения к планетам. Астрономы стали использовать Луну в роли зеркала следующим образом: во время лунных затмений на поверхность Луны попадает солнечный свет, прошедший сквозь земную атмосферу, затем он частично отражается от Луны, и астрономы на Земле могут его наблюдать. Яркость Луны во время затмения показывает, насколько прозрачна атмосфера Земли, велика ли в ней облачность; цвет лунной поверхности говорит о степени запыленности нашей атмосферы.
А совсем недавно лунное затмение позволило взглянуть на Землю как на экзопланету. Испанские астрофизики (E. Palle и др.) опубликовали результаты любопытной работы, которые увеличивают шанс успешного поиска внесолнечных планет с органической жизнью. Наблюдая частное лунное затмение 16 августа 2008 г., они получили спектр солнечного излучения, прошедший через атмосферу Земли и отраженный от Луны. В нем без особого труда обнаружились линии молекулярного кислорода, озона, водяного пара, метана и углекислого газа. Эти биомаркеры в своей совокупности однозначно свидетельствуют о наличии жизни на Земле. Такие же наблюдения за экзопланетами можно проводить в период их прохождения на фоне их звезды.
Рис. 5.4. Частное лунное затмение 16 августа 2008 г. Вверху слева: схема прохождения Луны через полутень и тень Земли. Указано всемирное время (UT). Справа: фото Луны в максимальной фазе затмения (21:10 UT). Внизу: схема (не в масштабе) прохождения солнечных лучей сквозь атмосферу Земли к Луне и отражения обратно к Земле.
Еще одно неожиданное использование Луны как зеркала произошло в области гамма-астрономии. В последние годы астрофизики интенсивно исследуют короткие гамма-всплески, источниками которых, по-видимому, служат самые удивительные космические объекты – нейтронные звезды, взрывы сверхновых и, возможно, что-то еще неизвестное. Аппаратура для регистрации гамма-лучей устанавливается на космических обсерваториях, поскольку сквозь земную атмосферу эти лучи не проходят. У каждого гамма-детектора есть определенный динамический диапазон: очень слабых вспышек он не замечает, а от слишком сильных его зашкаливает. Именно такая сверхсильная вспышка наблюдалась 27 декабря 2004 г. от источника SGR 1806-20, по-видимому, связанного с нейтронной звездой-магнитаром. Вспышку зафиксировали многие спутники, имеющие соответствующую аппаратуру, но измерить параметры самой яркой ее фазы не смогли, поскольку приборы «ослепли» от слишком сильного потока гамма-лучей. В это время российский спутник «Коронас-Ф» с гамма-спектрометром на борту оказался в тени Земли, и вспышка его не ослепила, но через несколько секунд он зафиксировал ослабленное эхо этой вспышки: лучи отразились от Луны! Их потока оказалось достаточно для измерений. Прав был Козьма Прутков: Луна полезнее Солнца!
Земля – фильтр, мишень, детектор
Тут самое время вспомнить, что наша Земля – не только «модель экзопланеты», но и сама – полноправная планета. Может ли она играть роль телескопа или хотя бы как-то способствовать изучению Вселенной? Казалось бы, земные явления только мешают астрономическим наблюдениям: достаточно вспомнить о свечении ночного неба, атмосферном дрожании, почти полной непрозрачности атмосферы в рентгеновском, инфракрасном и ультрафиолетовом диапазонах. Несмотря на это, в последние годы Земля все чаще становится элементом астрофизических приборов. Вот несколько примеров.