Статьи
Статьи читать книгу онлайн
Впервые на русском языке выходит книга статей Николы Теслы — известного изобретателя в области электро- и радиотехники, но вместе с тем, пожалуй, самого загадочного ученого конца XIX — начала XX века. Большая часть статей, составивших сборник, была опубликована при жизни Теслы в разных газетах и журналах США, где он прожил много лет.Читатель знакомится с удивительными опытами и рассуждетаями автора, затрагивающими почти все области человеческой деятельности, в которых прослеживается нетрадиционный взгляд на природные явления.Много тайн оставил после себя Н. Тесла, в которые еще предстоит проникнуть пытливым умам.Книга рассчитана на широкий круг читателей.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Когда к верхнему концу светящейся нити подносили палец или магнит, она могла менять свое положение в этом месте вследствие электростатического или магнитного воздействия. А когда объект возмущения очень быстро удалялся, получался результат аналогичный тому, когда вертикально подвешенный шнур быстро смещают в сторону и затем отпускают в точке, находящейся вблизи вертикали. При этом, когда в светящейся нити устанавливались колебания, образовывались два четко выделяющихся утолщения и нечеткое третье. Единожды установленные, колебания продолжались почти восемь минут, постепенно угасая. Скорость колебаний нередко меняется в ощутимых пределах, и было видно, что электростатическое притяжение стекла влияет на вибрирующую нить. Очевидно, что электростатическое действие не являлось причиной возникновения колебаний обычно неподвижной нити, которую всегда можно заставить вибрировать, если над верхней частью трубки быстро провести пальцем. Под действием магнита нить может разделяться на две вибрирующие части. Если поднести руку к нижнему покрытию трубки или к изолирующей пластине, то колебания ускоряются. Ускорение колебаний также происходит при увеличении напряжения, или частоты. Таким образом, либо увеличение частоты, либо прохождение более сильного разряда той же частоты, вызывают действие, соответствующее усилению натяжения шнура. Я не получил никаких экспериментальных доказательств истинности данной теории при использовании разрядов конденсатора. Светящаяся полоса, возникающая в лампе под действием повторяющихся разрядов лейденской банки, должна обладать прочностью, и если ее деформировать и резко отпустить, то она должна колебаться. Однако, количество вибрирующего вещества, возможно, настолько мало, несмотря на сверхвысокую скорость, инерция не может заметно проявить себя. Кроме того, вести наблюдение в таких случаях оказывается чрезвычайно трудным делом из-за присутствия основных колебаний.
Демонстрация того факта, который все еще нуждается в лучшем экспериментальном подтверждении, что колеблющееся газовое пламя обладает жесткостью, может очень сильно повлиять на научные взгляды ученых-теоретиков. Если учесть, что такие свойства могут быть замечены при низких частотах и незначительной разности потенциалов, то как же тогда должна вести себя газовая среда под воздействием сверхвысокого электростатического напряжения, которое может действовать в межзвездном пространстве, и которое может меняться с огромной скоростью? Существование такой электростатической, ритмически вибрирующей силы, — или вибрирующего электростатического поля, — может указать на возможный способ образования твердых тел из ульра-газообразной праматерии, и как поперечные и любые другие виды колебаний могут передаваться через газообразную среду, заполняющее все пространство. Далее, эфир и в самом деле может быть, лишенным твердости и состоянии покоя, он просто необходим как связующее звено, облегчающее взаимодействие. Что определяет твердость тела? Это должны быть скорость и масса движущейся материи. В газовой среде скорость может быть значительной, но плотность достаточно мала. В жидкости скорость также мала, хотя плотность может быть существенной. Но в обоих случаях инерционное сопротивление практически равно нулю. Но поместите газовую или жидкостную струю в интенсивное, быстро меняющееся электростатическое поле, придайте частицам колебания сверхвысокой скорости, и тогда инерционное сопротивление даст о себе знать. Тело сможет двигаться с большей или меньшей свободой через вибрирующую массу, но в целом оно будет твердым.
Есть предмет, который я должен упомянуть в связи с этим экспериментом. Это сильный вакуум. Это предмет, изучение которого не только интересно, но и полезно, так как это может привести к результатам большой практической важности. Заполнение промышленных электрических устройств, таких как лампы накаливания, работающие от обычных распределительных систем, более сильным вакуумом, не даст никаких преимуществ. В этом случае работа выполняется на нити накаливания и состояние газа не имеет большого значения, поэтому улучшение будет, но незначительное. Но когда мы начинаем использовать очень высокие частоты и потенциалы, роль газа становится очень важной, и степень разрежения существенно влияет на результат. До тех пор, пока использовались обычные, пусть даже очень большие, катушки, возможности изучения данного предмета были ограничены. Они не простирались далее точки, с которой начиналось самое интересное, останавливаясь по достижении "не-пробиваемого" вакуума. Но сегодня мы можем получить от маленькой катушки пробойнго разряда катушки такую высокую разность потенциалов, которую не смогла бы дать даже самая большая обычная катушка, и что более важно, мы можем сделать так, чтобы разность потенциалов изменялась с большой скоростью. Теперь оба этих фактора позволяют нам передавать светящийся разряд через любой доступный вакуум, и область наших исследований существенно расширяется. В настоящее время из всех возможных направлений разработок практических осветительных приборов, работа в направлении сильного вакуума представляется наиболее многообещающей. Но для получения очень сильного вакуума устройства необходимо сильно усовершенствовать. Но мы не сможем это сделать до тех пор, пока мы не откажемся от механической и не улучшим электрическую вакуумную помпу. Молекулы и атомы могут выбрасываться лампой под действием сверхвысокой разности потенциалов. Это будет лежать в основе принципа работы вакуумной помпы в будущем. Сегодня мы можем получить наилучшие результаты использую механические приспособления. В этом отношении я не могу не сказать несколько слов о методе и приборе для получения высокой степени разрежения, который в ходе моих исследований зарекомендовал себя весьма неплохо. Вполне возможно, что и другие экспериментаторы использовали схожие устройства. Поскольку вполне возможно, что в их описаниях найдется немало интересного для других ученых, позволю себе несколько замечаний в отношении данного предмета, дабы представить исследование в более законченном виде.
На Рис. 30 изображен прибор, где S— это помпа Спреигеля, которая была специально сконструирована для этой работы. Запорный кран, который обычно применяется, был удален, и вместо него в горловину резервуара Rвмонтирована пустотелая пробка S.В пробке сделано маленькое отверстие b, через которое опускается ртуть. Размер входного отверстия оопределяется в соответствии с сечением трубки t, которая припаяна к резервуару, вместо того, чтобы быть подсоединенной к нему обычным способом. В конструкции этого прибора устранены некоторые недостатки, позволяющие избежать сложностей, которые часто возникали при использовании запорного крана на резервуаре и соединения последнего с низводящей трубкой.
Помпа через U-образную трубку tподсоединена к очень большому резервуару Rj.При сборке особое внимание следует уделить шлифовке поверхностей пробок ри р j.Обе пробки и ртутные чашки над ними сделаны очень д л и н н ы м и. После того, как U-образную трубку смонтируют и установят на своем месте, ее нагревают, для того, чтобы смягчить и снять напряжение, которое может возникнуть в результате недостатков монтажа. U-образная трубку оснащена запорным краном и двумя отводами: gи gj.Один из отводов, подключаемый к маленькой лампе b, обычно заполняется каустической содой, а другой, подключаемый к приемному резервуару, содержит разреженный воздух.
Резервуар Rjпосредством резиновой трубки подключается к немного большему по размеру резервуару R2. Каждый из двух резервуаров снабжен запорными кранами С/ и С2,соответственно. Резервуар R2 можно поднимать и опускать при помощи колеса и штатива. Диапазон его движений определен так, что если он заполнен ртутью и запорный кран С2закрыт, то когда он поднят, в нем образуется Торричеллева пустота. Он может быть поднят так высоко, что ртуть в резервуаре Rjостанавливается немного выше запорного крана Сj,и когда этот запорный кран закрыт, а резервуар R2опущен так, что в резервуаре R1образуется Торричеллиева пустота, то ртуть может быть опускаться настолько, что полностью заполняет полость последнего. Ртуть заполняет резервуар R2до уровня расположенного немного выше запорного крана С 2.