Статьи
Статьи читать книгу онлайн
Впервые на русском языке выходит книга статей Николы Теслы — известного изобретателя в области электро- и радиотехники, но вместе с тем, пожалуй, самого загадочного ученого конца XIX — начала XX века. Большая часть статей, составивших сборник, была опубликована при жизни Теслы в разных газетах и журналах США, где он прожил много лет.Читатель знакомится с удивительными опытами и рассуждетаями автора, затрагивающими почти все области человеческой деятельности, в которых прослеживается нетрадиционный взгляд на природные явления.Много тайн оставил после себя Н. Тесла, в которые еще предстоит проникнуть пытливым умам.Книга рассчитана на широкий круг читателей.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
В этом случае, сфера L оснащена большой горловиной n, которая позволяет маленькой лампе b перемещаться внутри большой. В противном случае конструкция должна быть такой, как, например, на Рис. 18. Маленькая лампа удобно расположена на стержне S,на котором также расположен тугоплавкий электрод m. Он отделен от алюминиевой трубки а несколькими слоями слюды Мдля того, чтобы предотвратить повреждение шейки во время быстрого нагревания алюминиевой трубки при включении тока. Если желаем получить свет только в результате накаливания электрода, то внутренняя лампа должна быть такой маленькой, насколько это возможно. Если желаем получить свечение, то лампа должна быть больше, иначе она будет тоже нагреваться, и тогда свечение прекратится. Обычно, в таком устройстве светится только маленькая лампа, так как бомбардировка внешней сферы практически отсутствует. В некоторых из этих ламп, конструкция которых приведена на Рис. 28, маленькие трубки были покрыты слоем светящейся краски, что производило прекрасные эффекты.
Вместо того, чтобы для избежания перегрева, делать внутреннюю лампу большой, можно сделать больше электрод m. В этом случае бомбардировка ослабнет по причине уменьшения электрической плотности.
Множество ламп было изготовлено так, как показано на рис. 29. Здесь маленькая лампа b, внутри которой помещен огнеупорный электрод m, содержит очень сильный вакуум. Она помещена внутрь сферы Lс умеренно разреженным газом, и запаяна наглухо. Основное достоинство этой конструкции в том, что она позволяет добиться очень сильного вакуума, и в то же время использовать большую лампу. В результате серии экспериментов с лампами, изображенными на Рис. 29, было установлено, что мы поступили правильно, сделав стержень sв области перемычки e очень толстым, а внутренний провод wтонким, так как иногда случается, что стержень в области перемычки нагревается и лампа лопается. Часто внешнюю сферу Lоткачивают лишь до такого состояния, чтобы мог проходить разряд, и пространство между лампами кажется темно-красным, что производит весьма любопытный эффект. В некоторых случаях, когда разрежение в большой сфере Lочень низкое, а воздух хорошо проводит электричество, для того чтобы довести электрод mдо состояния накала, необходимо нанести, желательно на верхнюю часть шейки сферы, покрытие из фольги, которое подсоединяется к изолированному телу, к другой клемме катушки или заземляется, поскольку хорошо проводящий ток воздух отчасти ослабляет эффект, вероятно, вследствие индуктивного воздействия со стороны провода wв месте, где он входит в лампу — в области перемычки е.Другая проблема, которая, однако, всегда присутствует, когда огнеупорный электрод располагается в очень маленькой лампе, и в устройстве изображенном на Рис. 29 — вакуум в лампе b ухудшается за сравнительно короткое время.
Главная идея двух последних описанных конструкций состоит в ограничении области нагрева рамками центральной части сферы, за счет не допущения циркуляции воздуха вокруг нее. Это достоинство конструкции обеспечивается, но благодаря нагреву внутренней лампы и медленному испарению стекла, трудно поддерживать вакуум, даже в конструкции, изображенной на рис. 28, в которой обе лампы сообщаются.
Но есть значительно более лучший способ — почти идеальный способ — это использование тока значительно более высокой частоты. Чем выше частота, тем медленнее обмен воздуха, и я думаю, что вполне можно получить частоту, при которой не было бы никакого обмена молекулами воздуха вокруг клеммы. Затем мы произвели бы пламя, которое происходит не в результате сжигания вещества. Это было бы необычное пламя, потому, что оно жесткое. При таких высоких частотах в игру вступает инерция частиц. Так как кистевой разряд, или пламя приобретает неподвижность благодаря инерции частиц, то их обмен следует предотвращать. Это неизбежно произойдет при увеличении числа импульсов, в результате чего потенциальная энергия частиц снизится до такой степени, что останутся только атомные колебания, а движение и передачи энергии в рамках измеримого пространства прекратится. Таким образом, обычная газовая горелка, подсоединенная к источнику быстро изменяющегося напряжения, до определенного предела увеличивает свою эффективность. Это происходит по двум причинам, из-за дополнительно полученных колебаний и из-за замедления процесса распространения частиц.
Восполнение энергии несет в себе определенные трудности, но оно необходимо для поддержания "горения". Продолжая увеличивать частоту импульсов, с учетом того, что они могут передаваться и воздействовать на пламя, в результате получим "гашение" последнего, подразумевая под этим термином только прекращение химического процесса.
Тем не менее я полагаю, что в случае использования электрода, погруженного в жидкую изолирующую среду и окруженного независимыми носителями электрических зарядов, которые могут обладать индуктивным воздействием, в результате существенного увеличения частоты импульсов, вероятно, произойдет притяжение всего окружающего газа к электроду. Для подтверждения этого достаточно всего лишь принять на как истинное то, что независимые тела имеют различную форму. Таким образом они могут поворачиваться к электроду стороной, которая имеет наибольшую электрическую плотность. При нахождении тел в этом положении ближе к электроду, жидкостное сопротивление должно быть ниже, нежели тогда, когда они находятся на большем удалении от него.
Существует общераспространенное мнение, и я к нему присоединяюсь, что не может быть и речи о том, чтобы выработать ток такой частоты — если рассматривать некоторые из вышеизложенных положений как истинные — при которой можно получить результаты, обозначенные мною как возможные. Но я пришел к убеждению, что достижение этих результатов возможно при более низких частотах, нежели те, которые рассчитывались сначала. При установлении пламени, возникают легкие колебания, вызванные столкновениями атомов, или молекул. Но каково соотношение между частотой столкновений и вызванными колебаниями? Несомненно, что оно должно быть несравнимо меньше, чем частота ударов колокола и звуковых колебаний, либо частота разрядов и колебаний конденсатора. Мы можем побудить молекулы газа к столкновению, используя электрические импульсы переменного тока высокой частоты, и тем самым мы можем имитировать процесс, происходящий в пламени. Из экспериментов с частотами, которые мы можем получить, я сделал вывод, что мы можем получить данный результат при помощи импульсов, передаваемых через проводник.
В связи с этим, мне кажется, будет очень интересно продемонстрировать жесткость колебаний газовой колонки. Несмотря на то, что с использованием тока столь низкой частоты, как скажем 10 000 колебаний в секунду, который я легко мог получить от специально сконструированного генератора, выполнение этой задачи на первый взгляд кажется обескураживающим, я все же провел серию экспериментов. Пробные эксперименты с воздухом при обычном давлении не привели ни к какому результату, но результаты экспериментов с умеренно разреженным воздухом, я рассматриваю как безошибочное экспериментальное подтверждение искомого свойства. Поскольку результат такого рода может привести исследователей к важным умозаключениям, я опишу один из проведенных экспериментов.
Хорошо известно, что через трубку, содержащую слабо разреженный газ, разряд может проходить в виде тонкой светящейся нити. Когда разряд возникает от тока низкой частоты, получаемого от катушки, работающей в обычном режиме, эта нить инертна. Если к ней приблизить магнит, ближайшая к нему часть притянется или оттолкнется, в зависимости от направления силовых линий магнита. Я предположил, что если такую нить получить от тока очень высокой частоты, то она должна быть более или менее прочной, и поскольку нить будет видимой, то ее легче будет изучать. В связи с этим, я подготовил трубку около 1 дюйма в диаметре, и 1 метра в длину, с внешним покрытием на каждом конце. Воздух в трубке был разрежен до такой степени, при которой даже при слабом действии возникает нить разряда. Я должен заметить, что общие аспекты трубки и степень разрежения совершенно отличны от тех, которые применяются при обычном низкочастотном токе. Поскольку предпочтительнее работать с одной клеммой, то трубка была подвешена к одному из концов провода, подсоединенного к клемме, покрытие из фольги подсоединено к проводу, а к нижнему слою покрытия подсоединена маленькая изолирующая пластинка. Когда нить образовывалась, она тянулась от верхнего конца трубки, до нижнего. Если она обладала упругостью, то эта упругость напоминала если не прочность эластичного шнура, натянутого между двумя опорами, то уж во всяком случае упругость шнура, подвешенного вертикально вниз при помощи небольшого груза на конце.