Есть идея!
Есть идея! читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Обобщение задачи на случай, когда требуется определить наименьшее число монет, при котором из выданных автоматом шаров заведомо можно выбрать k шариков одного цвета, приводит к следующему решению. Если имеются шары n цветов (шаров каждого цвета не меньше k), то для получения k шаров одного цвета необходимо выбрать не более n(k − 1) + 1 шаров. Читателю доставит удовольствие самостоятельно исследовать, что произойдет в том случае, если шаров одного или нескольких цветов будет меньше k.
Задачи этого типа можно промоделировать не только на автоматах для продажи жевательной резинки, но и многими другими способами. Например, сколько карт необходимо вытащить из колоды в 52 листа, чтобы 7 карт заведомо были одной масти? Здесь n = 4, k = 7, и наша формула дает ответ? 4(7–1)+1=25.
Мы рассмотрели лишь очень простые комбинаторные задачи, но и они приводят к интересным и трудным вопросам теории вероятностей. Например, какова вероятность извлечь 7 карт одной масти, если вы вытаскиваете из колоды, не возвращая, n карт, где n — любое число от 7 до 24? (Вероятность извлечь 7 карт одной масти, очевидно, равна 0, если из колоды вытащить менее 7 карт, и равна 1, если вытащить более 24 карт). Как изменятся вероятности, если мы условимся возвращать каждую извлеченную карту и тщательно тасовать колоду перед тем, как вытягивать из нее очередную карту? Более трудный вопрос: каково математическое ожидание (среднее по длинной серии испытаний) числа карт, которые необходимо извлечь (с возвратом или без возврата) из колоды, чтобы k из них заведомо были одной масти?
Турнир по настольному теннису
Пять членов клуба любителей настольного тенниса средней школы им. Милларда Филмора решили провести между собой турнир по олимпийской системе.
Тренер составил таблицу розыгрыша турнира, снабдив ее следующими пояснениями.
Тренер. Пять — число нечетное, поэтому в первой круге один участник турнира свободен от игры. Еще один участник свободен от игры во втором круге. Таким образом, всего за турнир будет сыграно 4 партии.
На следующий год в спортивный клуб записалось 37 школьников. Тренер снова составил таблицу розыгрыша турнира, постаравшись свести до минимума число участников, которые переходят в следующий круг без игры. Сколько партий было сыграно за весь турнир на этот раз?
Как, вы еще не сосчитали? А ведь задача решается просто! В каждой партии проигравший выбывает, а поскольку дли того, чтобы определить победителя, следует исключить всех участников, кроме одного, то за весь турнир должно состояться 36 партий. Не правда ли, все очень просто?
Если вы пытались решить задачу о турнире по настольному теннису «в лоб», составляя различные варианты таблиц розыгрыша турнира с 37 участниками, то, должно быть, заметили, что независимо от способа составления таблицы число участников, переходящих в следующий круг без игры, всегда равно 4. В общем случае число участников, для которых в очередном круге не хватает партнера, есть функция от числа n всех участников турнира. Кате установить, сколько участников вынуждены будут перейти в следующий круг без игры?
При заданном n число участников, остающихся без партнера, можно определить следующим образом. Вычтем из n наименьшую степень числа 2, которая больше или равна n. Полученную разность запишем в двоичной системе. Число единиц в двоичной записи и будет равно числу участников турнира, вынужденных перейти в следующий круг без игры из-за нехватки партнера. В нашей задаче мы вычтем 37 из 64 (то есть из 26) и получим разность, равную 27. Десятичное число 27 в двоичной системе имеет вид 11011. Поскольку в его записи 4 единицы, то за весь турнир без игры в следующий круг перейдут 4 игрока. Обоснование этого алгоритма для определения числа участников, которым не хватает партнера, мы предоставляем читателю в качестве интересного упражнения.
Описанный в задаче тип турнира иногда называют «игрой на вылет». Он аналогичен алгоритму, который вычислители, работающие на современных ЭВМ, используют для нахождения наибольшего элемента в множестве из n элементов: наибольший элемент находят, сравнивая попарно элементы множества и отбрасывая при очередном сравнении тот из двух элементов, который не больше другого. Как мы уже знаем, чтобы найти наибольший элемент, достаточно произвести ровно n − 1 попарных сравнений. При автоматической сортировке сравнивать можно не только по 2, но и по 3, 4 и т. д. элемента.
Автоматическая сортировка играет важную роль в вычислительной математике и в информатике. Ей посвящено немало книг. Каждый из нас без труда назовет длинный перечень примеров применения автоматической сортировки. Подсчитано, что примерно четверть машинного времени в научных и в технических расчетах затрачивается на решение задач, связанных с сортировкой данных.
Стаканчики профессора Квиббла
Как-то раз продавец прохладительных напитков Барни предложил двум покупателям следующую задачку.
Барни. Перед вами 10 бумажных стаканчиков, расставленных в ряд. В первые 5 стаканчиков я наливаю кинки-колу, остальные 5 стаканчиков остаются пустыми. Можно ли переставить 4 стаканчика так, чтобы пустые и полные стаканчики чередовались?
Барни. Правильно! Стоит лишь переставить второй стаканчик с седьмым, а четвертый с девятым, как задача будет решена.
Разговор Барни с покупателями услышал проходивший мимо профессор Квиббл, большой любитель неожиданных решений, который счел необходимым вмешаться.
Проф. Квиббл. Переставлять 4 стаканчика совсем не обязательно. Я берусь решить задачу, переставив лишь 2 стаканчика. Как, по-вашему, это возможно?
Проф. Квиббл. Мое решение проще простого. Я беру второй стаканчик и переливаю его содержимое в седьмой, а содержимое четвертого стаканчика — в девятый.
Хотя предложенное профессором Квибблом шуточное решение основано на неоднозначном толковании слова «переставить» (означающего не только «поменять местами», как полагал Барни, но и «поставить по-другому», чем и воспользовался профессор Квиббл), исходная задача не столь тривиальна, как может показаться. Рассмотрим, например, аналогичную задачу для случая, когда из 200 стаканчиков, выстроенных в ряд, в первые 100 налита кинки-кола, а 100 остальных оставлены пустыми. Сколько пар стаканчиков следует поменять местами, чтобы пустые и полные стаканчики чередовались?
Поскольку следить за 200 стаканчиками довольно трудно, разберем сначала ту же задачу при меньших значениях n, где n — число полных (или пустых) стаканчиков, и попытаемся подметить общую закономерность. Стаканчики можно «моделировать» фишками двух цветов, игральными картами, выложенными на столе рубашкой либо вверх, либо вниз, монетами и тому подобными предметами, наделенными каким-нибудь «двузначным» признаком. При n = 1 для решения задачи не требуется переставлять ни одной пары стаканчиков. При n = 2 решение очевидно и сводится к перестановке одной пары стаканчиков. Возможно, вы удивитесь, когда узнаете, что при n = 3 чередование пустых и полных стаканчиков достигается перестановкой одной пары стаканчиков. Еще немного усилий, и вам откроется довольно простая общая закономерность. При четном n для решения задачи требуется поменять местами n/2 пар, а при нечетном n соответственно (n − 1)/2 пар стаканчиков. Следовательно, если имеется 100 пустых и 100 полных стаканчиков, то задачу можно решить, переставив 50 пар стаканчиков.