-->

Есть идея!

На нашем литературном портале можно бесплатно читать книгу Есть идея!, Гарднер Мартин-- . Жанр: Прочая научная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Есть идея!
Название: Есть идея!
Дата добавления: 15 январь 2020
Количество просмотров: 285
Читать онлайн

Есть идея! читать книгу онлайн

Есть идея! - читать бесплатно онлайн , автор Гарднер Мартин
Книга известного американского популяризатора науки Мартина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами. Рассчитана на самый широкий круг читателей.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 2 3 4 5 6 7 8 9 10 ... 50 ВПЕРЕД
Перейти на страницу:

Обобщение задачи на случай, когда требуется определить наименьшее число монет, при котором из выданных автоматом шаров заведомо можно выбрать k шариков одного цвета, приводит к следующему решению. Если имеются шары n цветов (шаров каждого цвета не меньше k), то для получения k шаров одного цвета необходимо выбрать не более n(k − 1) + 1 шаров. Читателю доставит удовольствие самостоятельно исследовать, что произойдет в том случае, если шаров одного или нескольких цветов будет меньше k.

Задачи этого типа можно промоделировать не только на автоматах для продажи жевательной резинки, но и многими другими способами. Например, сколько карт необходимо вытащить из колоды в 52 листа, чтобы 7 карт заведомо были одной масти? Здесь n = 4, k = 7, и наша формула дает ответ? 4(7–1)+1=25.

Мы рассмотрели лишь очень простые комбинаторные задачи, но и они приводят к интересным и трудным вопросам теории вероятностей. Например, какова вероятность извлечь 7 карт одной масти, если вы вытаскиваете из колоды, не возвращая, n карт, где n — любое число от 7 до 24? (Вероятность извлечь 7 карт одной масти, очевидно, равна 0, если из колоды вытащить менее 7 карт, и равна 1, если вытащить более 24 карт). Как изменятся вероятности, если мы условимся возвращать каждую извлеченную карту и тщательно тасовать колоду перед тем, как вытягивать из нее очередную карту? Более трудный вопрос: каково математическое ожидание (среднее по длинной серии испытаний) числа карт, которые необходимо извлечь (с возвратом или без возврата) из колоды, чтобы k из них заведомо были одной масти?

Турнир по настольному теннису

Есть идея! - i008.png

Пять членов клуба любителей настольного тенниса средней школы им. Милларда Филмора решили провести между собой турнир по олимпийской системе.

Есть идея! - i009.png

Тренер составил таблицу розыгрыша турнира, снабдив ее следующими пояснениями.

Тренер. Пять — число нечетное, поэтому в первой круге один участник турнира свободен от игры. Еще один участник свободен от игры во втором круге. Таким образом, всего за турнир будет сыграно 4 партии.

Есть идея! - i010.png

На следующий год в спортивный клуб записалось 37 школьников. Тренер снова составил таблицу розыгрыша турнира, постаравшись свести до минимума число участников, которые переходят в следующий круг без игры. Сколько партий было сыграно за весь турнир на этот раз?

Есть идея! - i011.png

Как, вы еще не сосчитали? А ведь задача решается просто! В каждой партии проигравший выбывает, а поскольку дли того, чтобы определить победителя, следует исключить всех участников, кроме одного, то за весь турнир должно состояться 36 партий. Не правда ли, все очень просто?

Сколько участников турнира перейдут в следующий круг без игры?

Если вы пытались решить задачу о турнире по настольному теннису «в лоб», составляя различные варианты таблиц розыгрыша турнира с 37 участниками, то, должно быть, заметили, что независимо от способа составления таблицы число участников, переходящих в следующий круг без игры, всегда равно 4. В общем случае число участников, для которых в очередном круге не хватает партнера, есть функция от числа n всех участников турнира. Кате установить, сколько участников вынуждены будут перейти в следующий круг без игры?

При заданном n число участников, остающихся без партнера, можно определить следующим образом. Вычтем из n наименьшую степень числа 2, которая больше или равна n. Полученную разность запишем в двоичной системе. Число единиц в двоичной записи и будет равно числу участников турнира, вынужденных перейти в следующий круг без игры из-за нехватки партнера. В нашей задаче мы вычтем 37 из 64 (то есть из 26) и получим разность, равную 27. Десятичное число 27 в двоичной системе имеет вид 11011. Поскольку в его записи 4 единицы, то за весь турнир без игры в следующий круг перейдут 4 игрока. Обоснование этого алгоритма для определения числа участников, которым не хватает партнера, мы предоставляем читателю в качестве интересного упражнения.

Описанный в задаче тип турнира иногда называют «игрой на вылет». Он аналогичен алгоритму, который вычислители, работающие на современных ЭВМ, используют для нахождения наибольшего элемента в множестве из n элементов: наибольший элемент находят, сравнивая попарно элементы множества и отбрасывая при очередном сравнении тот из двух элементов, который не больше другого. Как мы уже знаем, чтобы найти наибольший элемент, достаточно произвести ровно n − 1 попарных сравнений. При автоматической сортировке сравнивать можно не только по 2, но и по 3, 4 и т. д. элемента.

Автоматическая сортировка играет важную роль в вычислительной математике и в информатике. Ей посвящено немало книг. Каждый из нас без труда назовет длинный перечень примеров применения автоматической сортировки. Подсчитано, что примерно четверть машинного времени в научных и в технических расчетах затрачивается на решение задач, связанных с сортировкой данных.

Стаканчики профессора Квиббла

Есть идея! - i012.png

Как-то раз продавец прохладительных напитков Барни предложил двум покупателям следующую задачку.

Есть идея! - i013.png

Барни. Перед вами 10 бумажных стаканчиков, расставленных в ряд. В первые 5 стаканчиков я наливаю кинки-колу, остальные 5 стаканчиков остаются пустыми. Можно ли переставить 4 стаканчика так, чтобы пустые и полные стаканчики чередовались?

Есть идея! - i014.png

Барни. Правильно! Стоит лишь переставить второй стаканчик с седьмым, а четвертый с девятым, как задача будет решена.

Есть идея! - i015.png

Разговор Барни с покупателями услышал проходивший мимо профессор Квиббл, большой любитель неожиданных решений, который счел необходимым вмешаться.

Проф. Квиббл. Переставлять 4 стаканчика совсем не обязательно. Я берусь решить задачу, переставив лишь 2 стаканчика. Как, по-вашему, это возможно?

Есть идея! - i016.png

Проф. Квиббл. Мое решение проще простого. Я беру второй стаканчик и переливаю его содержимое в седьмой, а содержимое четвертого стаканчика — в девятый.

Глубокая мысль

Хотя предложенное профессором Квибблом шуточное решение основано на неоднозначном толковании слова «переставить» (означающего не только «поменять местами», как полагал Барни, но и «поставить по-другому», чем и воспользовался профессор Квиббл), исходная задача не столь тривиальна, как может показаться. Рассмотрим, например, аналогичную задачу для случая, когда из 200 стаканчиков, выстроенных в ряд, в первые 100 налита кинки-кола, а 100 остальных оставлены пустыми. Сколько пар стаканчиков следует поменять местами, чтобы пустые и полные стаканчики чередовались?

Поскольку следить за 200 стаканчиками довольно трудно, разберем сначала ту же задачу при меньших значениях n, где n — число полных (или пустых) стаканчиков, и попытаемся подметить общую закономерность. Стаканчики можно «моделировать» фишками двух цветов, игральными картами, выложенными на столе рубашкой либо вверх, либо вниз, монетами и тому подобными предметами, наделенными каким-нибудь «двузначным» признаком. При n = 1 для решения задачи не требуется переставлять ни одной пары стаканчиков. При n = 2 решение очевидно и сводится к перестановке одной пары стаканчиков. Возможно, вы удивитесь, когда узнаете, что при n = 3 чередование пустых и полных стаканчиков достигается перестановкой одной пары стаканчиков. Еще немного усилий, и вам откроется довольно простая общая закономерность. При четном n для решения задачи требуется поменять местами n/2 пар, а при нечетном n соответственно (n − 1)/2 пар стаканчиков. Следовательно, если имеется 100 пустых и 100 полных стаканчиков, то задачу можно решить, переставив 50 пар стаканчиков.

1 2 3 4 5 6 7 8 9 10 ... 50 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название