Пять возрастов Вселенной
Пять возрастов Вселенной читать книгу онлайн
В конце двадцатого века Фред Адамс и Грег Лафлин завладели вниманием всего мира, выделив пять временных эпох. Этих авторов считают создателями долгосрочного проекта эволюции Вселенной. Масштабы их творения, охватившего полную историю космоса от его рождения до гибели, и глубина рассмотренных научных вопросов внушают благоговейный трепет. Однако «Пять возрастов Вселенной» — не просто справочник, описывающий физические процессы, которые руководили нашим прошлым и будут формировать наше будущее, это истинная эпопея. С ее помощью можно совершить фантастическое путешествие в физику вечности, не покидая Земли. Это единственная биография Вселенной, которая вам когда-либо понадобится.
Книга предназначена для широкого круга читателей.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Возможные пути распада протона, упомянутые до сих пор, не включают четвертой силы природы — гравитации. Вместе с тем именно сила гравитации управляет дополнительным механизмом распада протона. На самом деле, протон не является неделимой частицей: он образован тремя составляющими частицами, которые носят название кварков. Кварки в протоне не пребывают в покое: они находятся в состоянии постоянного возбуждения. Хоть и очень-очень редко, но они все же могут занять почти одно и то же положение внутри протона. Как только такое схождение происходит, если кварки оказываются достаточно близко друг к другу, они могут слиться в микроскопическую черную дыру. Оценки среднего времени, которое потребуется протону, чтобы туннелировать в миниатюрную черную дыру, весьма разнятся: от сорока пяти до ста шестидесяти девяти космологических декад, причем предпочтение отдается меньшему концу этого диапазона. Нет нужды говорить, что этот процесс еще недостаточно хорошо изучен, вследствие чего соответствующее ему время жизни протона может быть названо только в очень грубом приближении. Но если только протоны не распадутся еще раньше, им суждено исчезнуть в ходе этого процесса — принять смерть от силы гравитации.
Как мы расскажем в следующей главе, черные дыры тоже не вечны. Причем маленькие черные дыры живут гораздо меньше больших. После самостоятельного превращения протона в черную дыру он почти мгновенно испарится, оставив после себя позитрон. Таким образом, протон служит еще одним полем боя гравитации и термодинамики. Из-за неослабевающего действия гравитации, рано или поздно, она может спровоцировать гибель протонов и образование крошечных черных дыр. Но этот явный триумф гравитации недолговечен. Черные дыры испаряются сразу после их появления. Большая часть массы-энергии протона уходит в излучение, энтропия высвобождается во Вселенную, и термодинамика празднует окончательную победу.
Существует еще один, даже более экзотический, механизм распада протонов. Вакуумные конфигурации пустого пространства могут иметь более одного возможного состояния. В принципе, вакуум способен самопроизвольно изменять свою конфигурацию в ходе процесса квантово-механического туннелирования. Поскольку переходы вакуума из одного состояния в другое вызывают изменения барионного числа, они могут послужить спусковым крючком для протонного распада. Однако подобные переходы сильно подавлены, вследствие чего они требуют огромного времени. В отсутствие более быстрого пути распада протоны будут разрушены под действием этого механизма в сто сороковую-сто пятидесятую космологическую декаду.
Судьба вырожденных остатков
Заключительная глава звездной эволюции являет себя в распаде протонов. Хотя истинное время жизни протона опытным путем измерено не было, в данной книге мы принимаем, что типичное время жизни протона составляет тридцать семь космологических декад (десять триллионов триллионов триллионов лет). Когда протоны распадаются внутри звезды, например внутри белого карлика, образовавшаяся энергия пополняет энергетические запасы этой звезды. Наиболее распространенными продуктами этого распада являются позитрон и пион, причем последний мгновенно распадается на высокоэнергетические гамма-лучи. Позитрон быстро находит электрон, и две эти частицы аннигилируют, образуя еще два высокоэнергетических фотона гамма-излучения. Таким образом, в конечном итоге масса покояпротона превращается в гамма-излучение, нагревающее звезду. Следовательно распадающиеся протоны обеспечивают звезду внутренним источником энергии, только вот цена этого невероятно высока: чтобы создать тепло и свет, звезда должна отдать свою собственную массу покоя.
Белый карлик, существующий за счет распада протона, имеет светимость примерно в четыреста ватт: этого едва хватит на то, чтобы поддержать свечение нескольких электрических лампочек. Светимость целой галактики таких звезд в десять триллионов раз меньше светимости нашего Солнца. Даже если сложить мощности излучения всех звезд во всех галактиках, которые в настоящее время попадают в пределы нашего космологического горизонта, получившаяся светимость все равно будет в сто раз меньше светимости нашего Солнца. Да уж, такое будущее вряд ли можно назвать светлым.
Излучение внутри белого карлика будет рассеиваться много раз, прежде чем доберется до поверхности звезды. В эту будущую эпоху температура поверхности белого карлика составит всего 0,06 градусов Кельвина — примерно в сто тысяч раз холоднее Солнца. Так что эти четырехсотваттные лампочки вряд ли сгодятся в качестве настольных. Они испускают излучение, характеристическая длина волны которого равна пяти сантиметрам — приблизительно в пятьдесят тысяч раз длиннее тех волн, которые способен уловить глаз человека.
Во время эволюционной фазы распада протона химический состав белого карлика изменяется до неузнаваемости. Предположим, что мы начали со звезды, состоящей из чистого углерода. Каждое ядро углерода содержит шесть протонов и шесть нейтронов. По мере распада протонов и нейтронов ядра становятся меньше и содержат меньшее количество частиц. В ходе этого процесса исходные ядра углерода сокращаются до одной частицы, и звезда завершает свой жизненный цикл в виде чистого водорода.
Эту простую картину несколько осложняют две вещи. Во-первых, высокоэнергетическое излучение, которое выделяется в результате распада протона, может высвободить из ядер другие протоны и нейтроны. Эти освобожденные частицы, как правило, отказываются от своей вновь обретенной свободы и объединяются с другими ядрами. В среднем, каждый распад протона сопровождается одним переходом дополнительного протона или нейтрона от одного ядра к другому. Таким образом, мы получаем своего рода ядерную чехарду.
Второй проблемой является холодный синтез. Даже при низких температурах, в данном случае не превышающих один градус ниже абсолютного нуля, иногда, из-за принципа неопределенности Гейзенберга, могут синтезироваться ядра. По причине волновой природы частиц определить точное место их положения не представляется возможным. В результате два ядра иногда оказываются достаточно близко друг к другу, чтобы синтезировать более тяжелое ядро. В недрах белого карлика, который в миллион раз плотнее Земли, холодный синтез водорода занимает всего сто тысяч лет, а углерода — около двухсот космологических декад (10 200лет). Таким образом, белые карлики имеют тенденцию сохранять гелиевый состав. Однако приведенные временные интервалы настолько велики, что холодный синтез не оказывает значительного влияния на эволюцию белого карлика во время фазы протонного распада, которая произойдет через 10 37лет. Ясно также и почему холодный синтез не играет хоть сколько-нибудь интересной роли в современной Вселенной.
По мере того как в ходе распада протонов белый карлик продолжает терять массу, его строение претерпевает заметные изменения. Из-за алогичной природы вырожденного вещества радиальный размер белого карлика увеличивается по мере уменьшения его массы. Когда звезда расширяется, ее плотность уменьшается, и вещество, в конечном итоге, перестает быть вырожденным. Этот переход происходит, когда масса звезды уменьшается до массы Юпитера — приблизительно в тысячу раз меньше массы Солнца. На этом этапе эволюции звезда имеет плотность воды и радиус в десять раз меньший, чем у Солнца. Звезда состоит из застывшей массы атомов водорода: этакий огромный шар из ледяного водорода.
После исчезновения вырожденного состояния кристаллический белый карлик продолжает уменьшаться до тех пор, пока не станет настолько маленьким, что более уже не сможет выполнять функции звезды. Этот финальный переход становится концом звездной эволюции. По-настоящему звезда умирает тогда, когда становится прозрачной, когда излучение, распространяющееся внутри звезды может свободно, без рассеивания отрываться от нее. В этот поворотный момент масса звезды составляет всего 10 24граммов — примерно в шесть тысяч раз меньше массы Земли.