-->

Диалоги (август 2003 г.)

На нашем литературном портале можно бесплатно читать книгу Диалоги (август 2003 г.), Гордон Александр-- . Жанр: Прочая научная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Диалоги (август 2003 г.)
Название: Диалоги (август 2003 г.)
Дата добавления: 15 январь 2020
Количество просмотров: 119
Читать онлайн

Диалоги (август 2003 г.) читать книгу онлайн

Диалоги (август 2003 г.) - читать бесплатно онлайн , автор Гордон Александр

Педаль газа выжата до упора. Человечество мчит по вечным коварным и непредсказуемым дорогам, отвечая по пути на иные вопросы, но неизменно оставляя без ответа вопрос: куда? Открытия, теории, гипотезы, цели учения, увеличивая объёмы наших знаний, ещё больше увеличивают наше незнание. При всём при этом остаются и звёздное небо над нами и нравственный закон внутри нас. Последний, правда, временами больше выглядит как нравственная беспредельщина.

12 глав книги – это стенограммы ночных передач-диалогов телевизионной программы «Гордон». Темы этих передач – иногда ответы, но чаще попытки ответов на проблемы, загадки, вопросы, которые то и дело волны современной науки и современной цивилизации выбрасывают на берега нашего беспокойного сознания.

1. Боги Древнего Египта

2. Квантовая космология

3. Динамическая нестабильность воды

4. Окраска рыб

5. Молекулы и информация

6. Критическая солёность

7. Перенос излучения

8. Дно океана

9. Погода и биржевые цены

10. Гамма-всплески

11. Паразитизм в живых системах

12. Сакральная физика

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 29 30 31 32 33 34 35 36 37 ... 56 ВПЕРЕД
Перейти на страницу:

Я здесь вынужден опять вернуться ненадолго к сформулированному критерию применимости феноменологических представлений о переносе излучения. Там было сказано, что, согласно этим представлениям, нужно выбросить все вот такие петли, которые описывают рассеяние на одном и том же рассеивателе. И было замечено, что всё-таки среди этих петель существуют такие процессы, которые дают заметный вклад в перенос излучения, даже если отдельные частицы в каждой петле случайно пошевелить для рассогласования фаз.

Эти петли имеют следующее строение. Здесь они показаны на верхнем рисунке. Это такие петли, в которых одна волна распространяется от фиксированного рассеивателя в одном направлении и возвращается к этому фиксированному рассеивателю, а другая волна распространяется в обратном направлении. И две такие волны идут от заданного рассеивателя вдоль петли, возвращаются опять к заданному рассеивателю – но идут в разных направлениях. Существенным свойством такого процесса является то, что в нём фазы прямого и обратного каналов рассеяния между собой согласованы. И поэтому такие волны, распространяющиеся в прямом и обратном направлениях, могут проинтерферировать. И таким образом такая петля даёт заметный вклад, но феноменологическими представлениями никак не описывается.

Теперь, собственно говоря, можно поступить следующим образом. Как же эту волну пронаблюдать экспериментально? Этот рассеиватель, эту частицу, на которой происходит повторное рассеяние, её мысленно можно раздвоить, и одну половинку заменить на приёмник, на источник излучения, а другую – на приёмник, и вынести такую раздвоенную частицу источник-приёмник вне среды. Тогда такое явление можно зафиксировать экспериментально, и оказывается, что учёт всех таких явлений даёт весьма большой вклад. Собственно говоря, результат получается такой же, как и согласно феноменологическим представлениям, это добавка к таким феноменологическим представлениям. Стало быть, согласно этому результату, феноменологические представления дают стопроцентную погрешность, то есть совершенно ошибаются. Но всё это происходит в узком конусе направлений рассеяния назад. Этот конус по ширине определяется отношением длины волны к длине свободного пробега. В лабораторных условиях этот конус составляет где-то одну сотую радиана, и, стало быть, он изымает из общего потока рассеянного излучения ничтожно малую долю, и таким образом не мешает применимости феноменологических представлений.

Но это явление, наличие такого конуса когерентного усиления обратного рассеяния, которое было в 69-73 годах теоретически обнаружено, потом экспериментально было открыто в 85 году тремя группами. Одна группа в Соединённых Штатах, в Сиэтле, группа Исимару, группа Лахендайка в Амстердаме и группа Маре в Гренобле. И после того как это явление было открыто, оно вызвало очень большой интерес. Надо сказать, что интерес был не меньше, чем интерес, вызванный работой Андерсона о локализации в решётках. А за эту работу Андерсон стал лауреатом Нобелевской премии, потому что работа эта имела очень большое значение для неупорядоченных веществ с примесями, и при исследовании вопросов проводимости через такие вещества. И тем не менее, эффект когерентного усиления обратного рассеяния вызвал не меньший интерес. И начиная с 85 года, и по настоящее время этот эффект постоянно исследуется разными группами, и прошёл почти через все оптические лаборатории мира. В общем-то эффект этот оказался универсальным, он связан с самыми общими представлениями о переносе излучения, он применим в любом, конечно, диапазоне, и в СВЧ, и для акустических волн – для каких угодно волн и для разных сред.

И в то же время, собственно говоря, наличие такого эффекта когерентного усиления обратного рассеяния с узким конусом, оно и на качественном уровне решило проблему применимости феноменологических представлений о переносе излучения. И эти представления были согласованы с микроскопическими представлениями, даже с явлением локализации излучения в рассеивающих средах. И, кстати говоря, этот эффект, связанный с такими петлями, который получил название эффекта слабой локализации, он проливал физический смысл и на локализацию Андерсона. Потому что здесь всё интерпретировалось наглядным образом, и вот эти петли, которые здесь нарисованы, они почти экспериментально так и обнаруживались, например, в экспериментах Лахендайка в Амстердаме.

Таким образом, было осознано взаимодействие фенологических представлений о переносе излучения с явлениями локализации. Да, кстати говоря, будьте добры, покажите, пожалуйста, картинку пять, чтобы уже к этому вопросу не возвращаться. Картинка пять, собственно говоря, поясняет экспериментальную схему того, как происходит эффект когерентного усиления обратного рассеяния, именно это и наблюдается в эксперименте. Здесь описан один луч, который идёт от источника и пробегает какую-то систему частиц, рассеивается на них и возвращается обратно к приёмнику. А другой луч, из источника, пробегает ту же самую систему частиц, но в обратном направлении и возвращается к приёмнику под некоторым углом. Этот уголочек, который обозначен буквой «тета», и есть конус усиления обратного рассеяния. Если он не слишком велик (порядка отношения длины волны к длине пробега, это для лабораторных условий где-то одна сотая радиана), то этот эффект наблюдается и фиксируется. Но здесь нужно сделать такую оговорку. Почему был такой большой разрыв? Эффект был предсказан в 69-73 годах, а наблюдение его осуществилось только в 85 году. Такой разрыв, видимо, был связан с тем, что для наблюдения этого эффекта из-за этого маленького конуса нужны были специальные среды с хорошо контролируемыми параметрами. То есть эти среды должны были состоять из одинаковых частичек – одинакового размера и с одинаковым показателем преломления. Такие среды в виде эмульсий латекса в воде стали, по моим сведениям, изготавливаться как раз где-то к 85 году немецкой химической промышленностью и были использованы для постановки такого рода экспериментов.

И, пожалуйста, покажите ещё рисунок 6. Рисунок 6 представляет собой те кривые, которые наблюдаются в эксперименте, когда исследуется это усиление обратного рассеяния. То есть наблюдение идёт в направлении назад, в узком конусе, здесь это где-то от нуля до десяти микрорадиан, одна сотая радиана. И в направлении рассеяния назад, в самом пике происходит это усиление обратного рассеяния. То есть пьедестал, который по краям расположен, это то, что обычно наблюдается согласно феноменологической теории переноса. А этот пик, это как раз вклад петель повторного рассеяния.

Кстати говоря, в 73 году, когда мы обнаружили такой эффект, мы обращались к экспериментаторам, которые у нас занимались теорией переноса, и они говорили: «Ну, что это за эффект, вот сколько мы экспериментов не делали, ничего подобного нет». Понятно, почему нет. Потому что здесь требовались, во-первых, специальные среды с хорошо контролируемыми параметрами. А во-вторых, нужна была очень высокая разрешающая способность, нужно было разрешать углы, в сотые доли радиана.

Как же дальше, начиная с 85 года, шло развитие всей этой области, связанной с многократным рассеянием, с переносом излучения. Этот пичок когерентного усиления обратного рассеяния оказался очень интересным, и исследовался на протяжении многих лет многими лабораториями мира. Самый пик, самое остриё, оказалось связанным с диффузионными путями, которые идут в глубине рассеивающей среды. А крылья связаны с путями, которые идут неглубоко и связаны с небольшим числом актов рассеяния. Значит, с помощью пика можно исследовать, как распространяется излучение в среде. Если, например, в среду ввести поглощение, то пик скругляется, потому что длинные диффузионные пути уничтожаются поглощением. Или, допустим, можно рассматривать конечный слой рассеивающей среды – если его толщина невелика, то длинные диффузионные пути тоже обрезаются границами среды и опять пик этот сглаживается. Исследовалось влияние магнитного поля на величину этого пика, исследовалось влияние броуновского движения частиц на величину этого пика. В общем, он оказался очень информативным, и поэтому тщательно исследовался.

1 ... 29 30 31 32 33 34 35 36 37 ... 56 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название