Кибернетика, ноосфера и проблемы мира
Кибернетика, ноосфера и проблемы мира читать книгу онлайн
В сборнике продолжается и развивается тема, рассматриваемая в предыдущей книге серии — «Кибернетика и ноосфера». Известные советские ученые раскрывают взаимосвязь задач сохранения мира и сохранения природы планеты, подчеркивают необходимость использования кибернетических идей и подходов для решения этих проблем.
Для широкого круга читателей, интересующихся вопросами управления в экологии.
Fb2 создан по материалам сайта http://nplit.ru «NPLit.ru: Библиотека юного исследователя»
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
При таком столкновении на поверхности Земли создается кратер диаметром, примерно в 10 раз большим диаметра падающего тела, и с глубиной до двух его диаметров. Сам астероид практически полностью испаряется, выбрасывая «вместо себя» массу породы порядка сотни масс астероида. Некоторая часть продуктов выброса — мелкоизмельченная порода — может быть заброшена высоко в атмосферу и даже в стратосферу и оставаться там продолжительное время.
Может ли падение такого метеорита привести к глобальным климатическим изменениям, и как вообще это могло повлиять на биосферу? Наиболее полный ответ в настоящее время на этот вопрос дает модель, разработанная американскими учеными [81]. Хотя в их модели искомые величины усреднены по горизонтам, она прослеживает временную эволюцию профиля по вертикали, изменение распределения частиц по размерам вследствие их выпадения, вымывания осадками, коагуляции и т. д. Аккуратно учитывается взаимодействие с частицами солнечной радиации, а также теплового излучения Земли и атмосферы. Модель рассчитывалась отдельно над сушей и над океаном.
Конечно, при подобном математическом моделировании всегда есть много неопределенностей в оценке различных параметров и процессов. Поэтому был рассчитан ряд сценариев. Во всех сценариях учитывается быстрое горизонтальное распространение пыли, благодаря возникновению температурных контрастов между загрязненными частями атмосферы, которые сильно поглощают солнечное излучение и потому разогреваются быстрее в сравнении с еще чистыми ее областями (именно этот механизм способствует быстрому — за одну-две недели — глобальному распространению облаков пыли на Марсе).
Несмотря на разброс, результаты всех рассчетов по различным сценариям показывают, что приблизительно месяц солнечное излучение будет настолько отрезано от поверхности, что там наступит полная тьма, на время до нескольких месяцев станет невозможен фотосинтез, в течение примерно полугода температура поверхности суши окажется ниже 0 С, т. е. ниже точки замерзания воды, а максимальное падение температуры поверхности суши до — 20 °C продлится месяц или больше.
Верхний слой океана вследствие его большой тепловой инерции за время около года, когда пыль оседает из тропосферы и стратосферы, успевает остыть всего лишь на несколько градусов. Перенос тепла из атмосферы над океанами на континенты способен уменьшить похолодание внутри континентов на 20–30 % и вблизи берегов в два-три раза, но в целом температура поверхности суши окажется существенно ниже нуля.
Эти результаты — изменение температуры атмосферы, поверхности суши и океана можно получить не только на больших численных моделях теории климата, общей циркуляции атмосферы и океана, но и с помощью совсем простой модели, доложенной авторами этой статьи на конференции «Мир после ядерной войны» 1 ноября 1983 г. в Вашингтоне. По этой модели авторы рассчитали изменения температуры во время «ядерной зимы» в гипотетическом случае падения астероида на Землю, а также при глобальных пыльных бурях на Марсе.
Результаты модельных расчетов американских авторов и наших собственных согласуются с тем, что вымирание морских организмов на границе мелового и третичного периодов было вызвано временным (на несколько месяцев) прекращением фотосинтеза в морских поверхностных водах и разрывом поэтому цепей питания. Прекращение фотосинтеза и похолодание на суше могло не так сильно повлиять на растения суши, так как они размножаются семенами, которые могли это пережить, а также потому, что цикл углерода на суше имеет время порядка нескольких лет или больше. Крупные животные могли вымереть как от холода, так и потому, что в условиях длительной темноты им было трудно находить пищу. Мелкие животные могли лучше приспособиться к уменьшениям света и температуры, например, зарывшись в землю.
Остается вопрос, есть ли на Земле кратер, который был бы отождествлен с падением такого астероида. В качестве наиболее вероятного кандидата был предложен Карский кратер (вблизи реки Кара, начинающейся на Северном Урале и впадающей в Байдарацкую губу Карского моря), Согласно данным, полученным путем палеонтологического анализа профессором МГУ В. И. Фельдманом, возраст кратера датируется между 60 и 66 млн. лет.
Карский кратер или карская депрессия, по терминологии ленинградского геолога В. Л. Масайтиса, впервые описавшего его как ударный кратер, состоит из двух кратеров: основного (Карского) диаметром 60 км и второго (Усть-Карского) диаметром 25 км, частично уходящего на дно Байдарацкой губы. Интересно, что В. Л. Масайтис отождествил с тем же ударом и третий Каменский кратер около г. Ростова (Ярославского) диаметром приблизительно 5 км. Все эти кратеры находятся на одной дуге большого радиуса и явно произошли от дублета (или триплета), который в космосе был единой системой, связанной своим слабым полем тяготения, но развалившейся в гораздо более сильном поле тяготения Земли по мере приближения к ней. Такая система при столкновении с Землей вполне могла поднять в воздух количество пыли, достаточное по порядку величины, чтобы вызвать описанную экологическую катастрофу, поскольку одновременное соударение двух (или трех) астероидов высвобождает больше энергии и поднимает больше пыли, чем один астероид суммарной массы [82]. В заключение стоит сказать, что гипотеза о падении небольшого астероида (или двух-трех астероидов) представляется достаточно обоснованной для объяснения причин экологической катастрофы 65 млн. лет тому назад. Ясны и физические механизмы воздействия на биосферу: запыление атмосферы, прекращение доступа солнечного света к поверхности, в результате чего прекращается фотосинтез и наступает резкое похолодание поверхности суши. Хотя запыление атмосферы было тогда в сотни раз большим, чем после возможного ядерного конфликта, для резкого падения температуры поверхности суши вовсе не нужно ослабления солнечного света в десятки тысяч раз, как при падении астероида, достаточно ослабления всего в несколько раз, чтобы осуществилось основное понижение температуры.
Реальным и сейчас уже хорошо изученным природным явлением, во многих чертах сходным с последствиями ядерной войны, служат пылевые бури на Марсе. Они вызывают и заметное охлаждение поверхности планеты, и существенный разогрев ее атмосферы.
Пылевые бури на Марсе были хорошо известны и в докосмическую эру по наземным астрономическим наблюдениям начиная с конца XVIII в. Как правило, бури наблюдались в периоды великих противостояний Марса. Во время прохождения планетой перигелия в ее южном полушарии конец весны — начало лета. При этом инсоляция поверхности планеты максимальна и выше средней примерно на 20 % из-за большой вытянутости орбиты Марса. Еще в 1909 г. французский астроном Антониади высказал идею, что желтые облака Марса состоят из частичек пыли.
Во время последнего великого противостояния осенью 1971 г. астрономы уже в середине сентября зафиксировали появление отдельных пылевых облаков. Когда в ноябре 1971 г. к Марсу приблизились межпланетные автоматические станции «Маринер-9», а затем «Марс-2 и -3», их телевизионные камеры зафиксировали, что вся планета покрыта сплошным облаком пыли, сквозь которое выступали лишь вершины четырех самых высоких марсианских гор — древних вулканов. Увиденное пылевое облако рассеялось полностью лишь в феврале 1972 г.
Впоследствии две межпланетные станции «Викинг» и две станции на поверхности планеты во всех деталях произвели как фотографирование развития пылевых бурь, так и разнообразные физические измерения, что и служит основой наших, уже довольно полных знаний о развитии и сущности этого явления.
Облака пыли обладают особенностью — возникать в определенных местах, преимущественно в субтропических и умеренных широтах южного полушария Марса в конце весны — начале лета, проходить дневной цикл развития, сильно разрастаться к концу дня и оседать за ночь. Запыленность атмосферы в среднем здесь повышается. За несколько дней пыль охватывает весь пояс широт, где облака зарождаются. Далее пелена пыли начинает распространяться в меридиональном направлении, и за время порядка десяти дней она покрывает всю планету.