-->

Кибернетика, ноосфера и проблемы мира

На нашем литературном портале можно бесплатно читать книгу Кибернетика, ноосфера и проблемы мира, Коллектив авторов-- . Жанр: Прочая научная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Кибернетика, ноосфера и проблемы мира
Название: Кибернетика, ноосфера и проблемы мира
Дата добавления: 15 январь 2020
Количество просмотров: 215
Читать онлайн

Кибернетика, ноосфера и проблемы мира читать книгу онлайн

Кибернетика, ноосфера и проблемы мира - читать бесплатно онлайн , автор Коллектив авторов

В сборнике продолжается и развивается тема, рассматриваемая в предыдущей книге серии — «Кибернетика и ноосфера». Известные советские ученые раскрывают взаимосвязь задач сохранения мира и сохранения природы планеты, подчеркивают необходимость использования кибернетических идей и подходов для решения этих проблем.

Для широкого круга читателей, интересующихся вопросами управления в экологии.

 

Fb2 создан по материалам сайта http://nplit.ru «NPLit.ru: Библиотека юного исследователя»

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 20 21 22 23 24 25 26 27 28 ... 41 ВПЕРЕД
Перейти на страницу:

Приведенные примеры дальнего распространения дыма от локальных пожаров и их метеорологических эффектов дают частичное представление о процессе глобального распространения дыма от массовых пожаров ядерной войны.

Мощные вулканические извержения

Крупное извержение вулкана — всегда стихийное бедствие для жителей окружающих областей. По различным оценкам за последние 500 лет только число человеческих жертв, вызванных этой причиной, составляет 200 000 человек.

Огромна разрушительная сила вулканов. Например, в результате извержения на греческом острове Санторин около 1500 г. до н. э. остров практически перестал существовать: образовалась кальдера объемом 80 м3. Освобожденная энергия вызвала приливную волну высотой до 30 м, опустошившую остров Крит, спустя несколько часов затопившую дельту Нила и разрушившую порт, удаленный на 1000 км от места извержения. Некоторые исследователи связывают с этим извержением легендарную гибель Атлантиды и библейскую «тьму египетскую».

Сто лет назад, в августе 1883 г., произошло одно из крупнейших известных извержений на островном вулкане Кракатау в Зондском проливе между островами Ява и Суматра, Грохот взрыва был слышен на расстоянии до 4000 км (в Австралии и на Цейлоне), было поднято в воздух около 20 км3 горных пород. Высота вызванных взрывом цунами достигала 40 м, и даже в Ла-Манше зарегистрировали увеличение прилива.

Пепел выпал на площади около 1 млн. км2. В Джакарте днем наступила полная темнота. Тончайшая пыль достигла стратосферы и распространилась по всей Земле, вызвав необычайно яркие закаты и восходы Солнца. Прошли годы, пока тонкая пыль осела. В результате частичного экранирования солнечного излучения на больших территориях снизилась среднегодовая температура воздуха [76].

В настоящее время по климатическим рядам температуры установлено, что в годы, следующие за крупнейшими извержениями или сериями извержений вулканов, средняя температура воздуха у поверхности Земли уменьшается на 0,3–0,5 °C. В отдельных регионах похолодание бывает более существенным.

В целях сравнения с ядерными выбросами и пожарами представляют интерес аэрозольные выбросы вулканов и их следствие — климатические эффекты извержения. Как уже отмечалось, аэрозольное облако в первую очередь уменьшает температурные контрасты. Это ярко проявилось при извержении вулкана Сент-Хеленс в мае 1980 г. Облако вулканических выбросов на пути своего следования по территории США понизило дневную температуру на 8 °C и на столько же повысило температуру ночью. Последнее связано с тем, что аэрозоль был достаточно крупный, в десять и более раз, чем частицы дыма, и равным образом влиял как на солнечное, так и на тепловое излучение.

По-видимому, крупнейшим в истории человечества было извержение вулкана Тамбора в Индонезии в 1815 г. При взрыве было поднято в воздух 150 км3 вещества. «Годом без лета» был назван последующий за извержением 1816 г. в Северной Америке и Западной Европе. В Новой Англии летом 1816 г. снег выпадал в июне, были заморозки в июле и августе. В Швейцарии и Франции в 1816 г. зарегистрировано самое позднее созревание урожая винограда за период с 1782 г. В Англии, Швейцарии и на севере США лето 1816 г. было самым холодным с начала метеорологических наблюдений.

Необычайно холодное лето вызвало неурожай и голод, особенно в опустошенной наполеоновскими войнами Европе. Не исключено, что одним из возможных последствий извержения Тамборы была пандемия холеры, которая возникла в результате голода в Бенгалии, последовавшим за очень холодным летом 1816 г., достигла Кавказа в 1823 г., а Европы и Северной Америки — в 1830–1832 гг. [77].

Столь губительные действия на обширных территориях Земли может вызвать похолодание в течение одного лета всего лишь на несколько градусов в отдельных регионах [78], приведшее к такому же, если не более значительному охлаждению.). Трудно даже представить последствия похолодания всей суши Земли на десятки градусов в результате «ядерной зимы».

Экологическая катастрофа около 65 миллионов лет тому назад

В истории Земли и ее биосферы было одно событие, которое, по всей видимости, может иметь прямое отношение к обсуждаемой теме. Мы имеем в виду массовое и одновременное исчезновение многих рептилий, в частности динозавров, значительного числа групп морских беспозвоночных и больших групп растений около 65 миллионов лет тому назад на границе мелового и третичного периодов геологической истории Земли. Многие поколения ученых, начиная с великого французского палеонтолога и анатома Ж. Кювье в начале XIX в. пытались объяснить это явление. Кювье предложил гипотезу катастроф, однако вскоре большинство ученых отвергло ее и в течение последующих примерно полутора веков она не пользовалась популярностью.

Тем не менее к концу семидесятых годов уже нашего века стало ясно, что биосфера в ее разнообразии наиболее чувствительна к климатическим изменениям, которые легко нарушают цепи питания в природе вследствие различной приспособляемости разных организмов к изменениям температуры, влажности и т. п. К этому же времени в разных частях земного шара бесспорно была установлена одновременность гибели за короткий промежуток времени фитопланктона морских поверхностных вод, многих семейств зоопланктона. Имеются убедительные свидетельства в пользу одновременности исчезновения 65 млн. лет тому назад динозавров и других рептилий, хотя этих данных не так много [79]. В 1979 г. группа сотрудников Калифорнийского университета (Беркли) объявила о том, что обнаружила аномально большие содержания тяжелого элемента иридия в морской формации близ Губбио в Аппенинских горах в Италии [80]. Иридий был лишь в слое глины мощностью 1–2 см, отделяющем морские известняки позднемелового периода от покрывающих их известняков раннетретичного возраста. Известняки под глинами содержат морские организмы, типичные для позднего мела. В глинах не обнаружено никаких организмов. В известняках над слоем глины организмы мелового периода не встречаются, но есть организмы, типичные для третичного периода.

Обогащение глины иридием, обнаруживаемом путем нейтронного активационного анализа, было в 30 раз больше по сравнению с обычными концентрациями в земных породах. Аналогичные результаты по обогащению иридием осадочных пород, датируемых переходом от мелового периода к третичному, были обнаружены в районе Стевнс Клинт, в Дании, где обогащение иридием было в 160 раз больше нормы, в ряде осадочных морских пород по данным глубоководного бурения в Атлантике, Тихом океане и в некоторых пресноводных озерах.

Как тяжелый элемент платиновой группы иридий в земной коре содержится в гораздо меньших концентрациях, чем в веществе солнечной системы, в частности в метеоритах. По всей видимости, он сконцентрирован в ядре Земли. Все это заставило ученых Калифорнийского университета предположить, что в породах, датируемых разделом мелового и третичного периода, иридий внеземного происхождения. Глобальная распространенность иридия дала возможность оценить поперечник упавшего на Землю небесного тела приблизительно в 10 км.

Какой же астероид таких размеров мог столкнуться с Землей 65 млн. лет тому назад и какова частота таких столкновений? Наиболее вероятным кандидатом считается астероид из группы Аполлона. Ее формируют небольшие небесные тела, чьи орбиты пересекают плоскость орбиты Земли. Сейчас известно около 30 объектов с диаметрами от 0,2 до 8 км. Учитывая несистематичность и неполноту их поиска с помощью телескопов и малость размеров, число астероидов в этой группе с диаметром больше 1 км может быть оценено приблизительно в 750. Неизбежно столкновение некоторых из них с Землей.

1 ... 20 21 22 23 24 25 26 27 28 ... 41 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название