Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту pbn.book@yandex.ru для удаления материала
Чтобы получить такое изображение, стекло помещается в рамку, которую держит художник справа. Лучи света (прямые линии) от изображаемого объекта, попадая в глаз художника, проходят через стекло и образуют на нем так называемую проекцию. Таким образом, для художника ключевыми понятиями являются перспектива и проекция.

Эта гравюра включена в трактат «Об измерениях» (1525) и известна под названием «Рисующий лютню». На ней Дюрер показывает, как получить изображение в перспективе с помощью проекции.
Обратите внимание, что в проективной геометрии параллельные линии сходятся в точке, называемой точкой схода, или точкой бесконечности. Понятие параллельных линий превращается в понятие прямых, которые пересекаются в точке, расположенной на бесконечном расстоянии. Однако эта бесконечно удаленная точка все еще находится в поле зрения наблюдателя.
Хорошим примером точки схода на плоскости является точка, где сходятся железнодорожные рельсы. Другим примером являются чертежи архитектора с плоскостными проекциями для изображения более реалистичного варианта дизайна.

Точка схода в реальности при взгляде на рельсы (сверху). Точка схода на художественной проекции. Иллюстрация из опубликованного в 1565 г. «Трактата о перспективе» фламандского художника Вредемана де Вриса (снизу).

Методы проективной геометрии приводят к искажению изображений: длины отрезков, величины углов и размеры фигур евклидовой геометрии не обязательно сохраняются. В сущности, проективная геометрия является геометрией художников. Поэтому параллельные линии изображались художниками эпохи Возрождения совсем не так, как у Евклида. Изменилось само понятие параллельности.
Вплоть до конца XVIII в. роль математики заключалась в обосновании физической реальности мира, в котором мы живем. В следующем же веке эта роль изменилась с появлением неевклидовых геометрий. Время «Начал» Евклида, являвшихся непререкаемой истиной на протяжении 23 веков, подошло к концу, и вместе с этим пошатнулось само понятие реальности в том абстрактном смысле, который в него вкладывали до сих пор.
Иммануил Кант утверждал, что пространство является системой отсчета, существующей в человеческом сознании, и, следовательно, аксиомы и постулаты геометрии Евклида являются предопределенным знанием, понятиями, априори запечатленными в уме человека. Без этих аксиом и постулатов невозможно даже рассуждать о пространстве. Тем не менее он был первым, кто допускал возможность существования другого типа геометрии. В своей первой работе, опубликованной в 1746 г., Кант рассматривает пространство с более чем тремя измерениями и говорит:
«Если возможно существование пространств с другими измерениями, то, скорее всего, Бог создал бы их, ибо его творения заключают в себе все величие и разнообразие, на которое они способны».
Геометриями, которые предсказал Кант, являются известные в наше время многомерные неевклидовы геометрии.
В формальном смысле евклидова геометрия определена в первых шести книгах «Начал», а неевклидовы геометрии получаются путем отказа от пятого постулата.
В формулировке Плейфера этот отказ означает две возможности: либо отрицать уникальность параллельной прямой, либо отрицать ее существование. Это может быть выражено следующими альтернативными утверждениями.
1. В плоскости через точку Р, не лежащую на данной прямой l, проходит более одной прямой, параллельной данной.
2. В плоскости через точку Р, не лежащую на данной прямой l, не проходит ни одна прямая, параллельная данной.

* * *
ИММАНУИЛ КАНТ (1724–1804)
Знаменитый немецкий философ Иммануил Кант получил строгое образование, при котором латинскому языку и религии уделялось больше внимания, чем математике и естественным наукам. И только в университете он по-настоящему занялся физикой и математикой. Но когда умер его отец, Кант был вынужден оставить учебу и работать репетитором, чтобы прокормить себя. В 1755 г. благодаря помощи друга он продолжил образование и получил докторскую степень. Кант в конечном счете стал преподавателем, работая в университетах в течение 15 лет, читая лекции по истории, естественным наукам и математике, а также по философии. Кант считается одним из самых ярких мыслителей современной Европы. С самого начала его теории оказывали огромное влияние на интеллигенцию и до сих пор являются основой современной философии, которая постоянно ссылается на него. Идеи Канта нашли отражение во многих дисциплинах: в философии, праве, этике, логике… Вместе с Платоном, Аристотелем и Декартом Кант является одним из основоположников западной философской мысли, отцом современной философии.

* * *
Чтобы в полной мере понять эти формулировки, нам в первую очередь необходимо выйти за рамки нашего восприятия того, чем являются параллельные линии. Новая геометрия может быть построена таким способом: мы сохраним все постулаты Евклида, но только заменим пятый постулат его альтернативой. Такая геометрия позволяет получать логичные результаты и не имеет внутренних противоречий. Первая такая геометрия, так называемая гиперболическая геометрия, была предложена Николаем Лобачевским (1792–1856) и Яношем Бойяи (1802–1860). Другую геометрию, так называемую эллиптическую геометрию, сформулировал Бернхард Риман (1826–1866).
Развитие неевклидовых геометрий проходило в два этапа: сначала были попытки доказать пятый постулат Евклида, а потом появились новые геометрии с альтернативным пятым постулатом, которые сосуществовали с евклидовой геометрией.
Такой подход предполагает существенные изменения в нашем восприятии реальности. Например, пятый постулат Евклида можно рассматривать в формулировке о сумме углов треугольника и сформулировать альтернативные постулаты. Сумма трех внутренних углов любого треугольника равна 180° — но только в мире Евклида, где параллельные линии можно продолжать до бесконечности и пространство не искривлено. А если бы Евклид побывал в бесконечности и увидел, что там произошло с параллельными линиями? А вдруг они бы пересеклись? Это бы значило, что пространство искривлено, а сумма углов треугольника больше 180°, как если бы треугольник был нарисован на поверхности апельсина. Аналогично в гиперболической геометрии, где параллельные линии неумолимо расходятся, сумма углов треугольника меньше 180°.
Евклидова геометрия содержит основные понятия любой геометрии, такие как точки, прямые и плоскости, но эти понятия в других геометриях необходимо пересмотреть. В новой геометрии прямой линией будет называться любая линия, которая является кратчайшим расстоянием между двумя точками, а плоскостью будет такая поверхность, которая обладает следующим свойством: если две точки на прямой принадлежат этой поверхности, то все другие точки на этой прямой также будут принадлежать этой поверхности.
Эти идеи действительны во всех геометриях и характеризуют новый подход к восприятию форм. Неевклидовы прямые линии могут оказаться искривленными, а в так называемой сферической геометрии сфера считается плоскостью и большие окружности на ее поверхности являются прямыми линиями. Обе геометрии имеют общую терминологию, потому что и там, и там прямая линия является самой простой линией, а плоскость — самой простой поверхностью.