Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление читать книгу онлайн
Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Представим себе машину Тьюринга в самой элементарной конфигурации. С одной стороны, ей необходима головка для считывания и записи, с помощью которой считывается содержимое ячейки, а затем стирается и записывается новый символ. В общей модели машины Тьюринга считалось, что после завершения цикла чтения ячейки, стирания содержимого и записи нового символа головка и вместе с ней вся машина сдвигается по отношению к ленте на одну позицию вправо (П) или влево (Л). То есть можно представить, что лента или машина переходит к позиции П или Л. Также машине необходим небольшой объем памяти — реестр, в котором хранится информация о состоянии или конфигурации в определенный момент времени. Реестр похож на светофор, который может быть красным (К), желтым (Ж) или зеленым (3). В конкретный момент времени машина находится в определенном состоянии, и количество возможных состояний является конечным. Обозначим его множество буквой Q (см. рисунок). Представим, что наша машина находится в одном из четырех состояний: E1, Е2, ЕЗ или Е4. Также имеется начальное состояние 10, соответствующее записи в реестре при запуске машины в работу.
Итак, машина располагает двумя конечными наборами символов — величинами, записываемыми в ячейки ленты (А = (0, 1, В)), и состояниями реестра машины (Q = (I0, El, Е2, ЕЗ, Е4)). Для того чтобы машина Тьюринга функционировала, она должна следовать определенному протоколу, словно офисный служащий. Всякий раз, когда служащий выполняет свою работу, он совершает определенную последовательность действий, и после завершения одного шага он должен знать, каким будет следующий. Подобным образом каждый раз, обработав символ на ленте, машина Тьюринга должна до начала обработки следующего символа актуализировать свое состояние.
СОСТОЯНИЯ МАШИНЫ
Простой пример возможных состояний машины из повседневной жизни представляют собой программы стиральной машины. После завершения операции аппарат актуализирует свое состояние, следуя заданной программе, как правило это стандартный цикл, состоящий из замачивания, стирки, полоскания и отжима. То есть в данном случае состояния машины (стиральной) — этапы программы, выполняемые в определенный момент.
Для того чтобы машина Тьюринга могла менять состояние, используется таблица, названная таблицей переходов, которую обозначим символом Д. В соответствии с этой таблицей, используя правила перехода, или функции, машина после завершения одной операции переходит к следующей. Таким образом, обратившись к таблице, машина Тьюринга после завершения операции актуализирует свое состояние. Каждый раз, когда головка для считывания/записи находит на ленте символ, она соотносит его с символом, описывающим собственное состояние машины и указывающим, что она должна сделать далее для каждой комбинации символов. То есть в таблице представлено состояние ячейки и состояние машины, А х Q. В соответствии с этой комбинацией по таблице определяются следующее состояние Q и новый символ А, который будет записан на ленте вместо считанного, а также то, в каком направлении должно будет перемещаться устройство по ленте: вправо (П) или влево (Л). Таким образом, в самом простом виде работа машины Тьюринга определялась тремя элементами: состоянием машины Q, алфавитом А и таблицей А, в которой собирается информация о каждом завершенном шаге машины Тьюринга для выполнения следующего.
Для того чтобы понять, как функционирует машина Тьюринга, приведем простой пример с тремя состояниями Q = {Е1, Е2, ЕЗ} и лентой памяти, ячейки которой могут содержать символы А = {0, 1}. Будем считать начальное состояние 10 равным Е1, головка считывания/записи находится во второй ячейке слева от рассматриваемого участка ленты, например имеющего вид 011110. Если таблица переходов сформирована тремя таблицами ниже, по одной на каждое из состояний El, Е2 и ЕЗ, то как будет вести себя машина?
Символ ленты
Записанный символ
Переход
Следующее состояние
0
1
Л
Е2
1
0
П
ЕЗ
Символ ленты
Записанный символ
Переход
Следующее состояние
0
0
Л
ЕЗ
1
1
П
Е1
Символ ленты
Записанный символ
Переход
Следующее состояние
0
1
Л
Е1
1
0
П
Е2
Читая таблицу переходов и учитывая, что каждая операция реализуется в единицу времени (t0, t1, t2,...), получаем, что начальное положение t0 имеет следующий вид.
Согласно таблице переходов и учитывая, что машина в начальный момент времени t0 находится в состоянии Е1, символ на ленте 1, в ячейке будет записан 0, шаг в следующую ячейку справа, состояние изменится на ЕЗ.
Действия машины для следующего момента времени t1, когда она будет находиться в состоянии ЕЗ, указаны в таблице переходов. Затем, после того как головка считает в ячейке символ 1, машина перейдет в состояние Е2, в ячейке будет записан 0, шаг в следующую ячейку вправо.
После завершения предыдущей операции наступит момент времени t2. Так как машина находится в состоянии Е2 и из ячейки считывается 1, то, следуя указаниям таблицы переходов, в ячейку будет записано 1, устройство перейдет вправо, и машина изменит состояние на Е1.
Последний момент времени, t4. Машина находится в состоянии Е1, в считываемой ячейке стоит символ 1. Согласно таблице переходов, в ячейку будет записан 0, шаг вправо, переход в состояние ЕЗ.
У-МАШИНА ТЬЮРИНГА. МОЖЕТ ЛИ МАШИНА БЫТЬ УНИВЕРСАЛЬНОЙ
Одним из ограничений машины Тьюринга является то, что она ведет себя как компьютер, выполняющий единственный алгоритм, то есть способный реализовывать только одну задачу. С исторической точки зрения одной из первых машин Тьюринга стала система AGC (Apollo Guidance Computer — бортовой управляющий компьютер миссии «Аполлон»). Эта машина была главным бортовым компьютером миссий NASA, позволивших совершить доставку человека на Луну 20 июля 1969 года. Задолго до этой эпопеи, осознавая присущее его машине ограничение, Алан Тьюринг сделал расширение своей машины, назвав результат универсальной машиной Тьюринга, или у-машиной. Речь идет о машине Тьюринга, которую можно использовать в виде любой другой машины Тьюринга, то есть способной обрабатывать другие алгоритмы. Таким образом, компьютер — это пример универсальной машины Тьюринга. Еще один пример — смартфоны, или мобильные телефоны, работающие как мини-компьютер.
ЛУННАЯ МИССИЯ «АПОЛЛОН-11»
Один из самых интересных примеров машины Тьюринга — миникомпьютер миссий «Аполлон», организованных NASA для доставки человека на Луну. Это была машина Тьюринга, разработанная в Массачусетском технологическом институте для навигации и прилунения. Среди множества мини-компьютеров, созданных для разных миссий, AGC (Apollo Guidance Computer — бортовой компьютер «Аполлона») был самым популярным. Программа, с помощью которой можно моделировать работу мини-компьютера миссий «Аполлон», а также выполнять современные программы, написанные для Windows, Linux, Mac Os или другой операционной системы, называется Virtual AGC. Она написана на Ассемблере, низкоуровневом языке программирования, в связи с тем что память мини-процессора AGC — всего 38912 символа длиной 15 бит (последовательность 15 единиц и нулей). Программа моделирует виртуальный компьютер в машине AGC, выполняющий программу, хранящуюся в его памяти. На лунном модуле мини-компьютер AGC использовал программу Luminary, в то время как на командном модуле применялась программа Colossus. Обе они доступны на симуляторе.