Как постепенно дошли люди до настоящей арифметики [без таблиц]

На нашем литературном портале можно бесплатно читать книгу Как постепенно дошли люди до настоящей арифметики [без таблиц], Беллюстин Всеволод Константинович-- . Жанр: Математика / Публицистика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Как постепенно дошли люди до настоящей арифметики [без таблиц]
Название: Как постепенно дошли люди до настоящей арифметики [без таблиц]
Дата добавления: 15 январь 2020
Количество просмотров: 224
Читать онлайн

Как постепенно дошли люди до настоящей арифметики [без таблиц] читать книгу онлайн

Как постепенно дошли люди до настоящей арифметики [без таблиц] - читать бесплатно онлайн , автор Беллюстин Всеволод Константинович

В тексте используется дореволюционная орфография. Если у вас не отображаются символы «ять» и другие, установите шрифт Palatino Linotype, или какой?нибудь свободный шрифт с их поддержкой

Викитека

Всякому, кто любитъ свой предметъ, бываетъ интересно знать, какъ онъ начался, какимъ путемъ онъ развивался, и какъ онъ вылился въ свою посл?днюю форму. Въ этой книжк? изложена исторія ари?метики, и очерки ея назначены для т?хъ, кто чувствуетъ расположеніе къ математик?. Юнымъ математикамъ я прежде всего назначаю свой трудъ. Онъ же можетъ пригодиться и для педагога: для учителя крайне важно, чтобы расширился его кругозоръ, чтобы онъ могъ критически отнестись къ настоящему положенію преподаванія, и чтобы историческія данныя оживили обученіе и осв?тили его.

Въ Германіи им?ется масса сочиненій по исторіи математики; очевидно, они нужны и полезны. Пусть же и въ Россіи мой небольшой трудъ сослужитъ свою скромную службу.

О первомъ изданіи этой книжки данъ отзывъ въ «В?стник? воспитанія» I, 1908 г. и въ «В?cтник? опытной физики и элементарной математики», № 445. Она названа «интересной», «просто, ясно и кратко написанной».

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

Въ составъ средневѣковыхъ ариѳметикъ входили еще такъ называемыя математическія развлеченія. Трудно и скучно было тогдашнимъ ученикамъ. Сухое изложеніе, мудреный языкъ, масса научныхъ терминовъ, отсутствіе объясненій [10] — все это приводило къ тому, что ученье обращалось въ долбленье, и только болѣе счастливые, т. е. болѣе сильные, умы могли справляться съ матеріаломъ, перерабатывать и понимать. Вотъ когда появились поговорки: «корень ученья горекъ» и «лучше книги не скажешь». Чтобы хотъ нѣсколько оживить учениковъ, утѣшить и ободрить, ихъ назидали, во-первыхъ, увѣ-щательными стихами, гдѣ воспѣвалась вся сладость подвига и вся цѣнность результатовъ, которыхъ имѣетъ достигнуть «мудролюбивый» отрокъ:

О любезный ариѳметикъ,
Буди наукъ не отметникъ,
Тщися еще быти усердъ,
Да будешь въ нихъ силенъ и твердъ,
Въ смѣтахъ какихъ дѣлъ купецкихъ,
И во всякихъ иныхъ свѣцкихъ.
Тѣмже въ Бога уыовая
И на помощь призывая,
Потрудися въ нихъ охотно,
Аще будетъ и работно.

Во-вторыхъ, давались задачи съ оотроумнымъ содержаніемъ и требовавшія особенной изворотливости и догадки. Вотъ задача изъ сборника, приписываемаго Алькуину (въ 8 в. по Р. X). Рукопись относится приблизительно къ 1000 г. по Р. X. «Два человѣка купили на 100 сольдовъ свиней и платили за каждыя пять штукъ по 2 сольда. Свиней они раздѣлили, продали опять каждыя 5 штукъ по 2 сольда и при этомъ получили прибыль. Какъ это могло случиться? А вотъ какъ: на 100 сольдовъ приходится 250 свиней, ихъ они раздѣлили пополамъ, на 2 стада, и изъ перваго стада отдавали по 2 свиньи на 1 сольдъ, а изъ второго по 3; тогда достаточно выдать по 120 штукъ изъ каждаго стада, такъ какъ придется получить 60 сольдовъ за свиней перваго стада, 40 за свиней второго, всего 100 сольдовъ; 5-ть же штукъ изъ каждаго стада останется въ прибыли». Требуется разгадать эту загадку.

Въ сборникѣ Алькуина содержится извѣстная загадка о волкѣ, козѣ и капустѣ, которыхъ надо перевезти черезъ рѣку, съ такимъ условіемъ, что въ лодкѣ нельзя помѣщать волка съ козой, козы съ капустой, и оставлять на берегу тоже нельзя вмѣстѣ, потому что они съѣдятъ; какъ же это устроить?

 Лучшій сборникъ задачъ-загадокъ издалъ Баше-де-Мезиріакъ въ 1612 году, заглавіе его такое: Problèmes plaisantes et dèlictables qui se font par les nombres. Въ немъ помѣщена большая часть тѣхъ задачъ, какія встрѣчаются и сейчасъ въ сборникахъ этого рода, наприм., о задуманныхъ числахъ, о работникѣ, котораго нанимаетъ хозяинъ съ условіемъ платить ему за рабочіе дни и вычитать за прогульные, и т. д.

 Въ старинныхъ русскихъ ариѳметикахъ можно отмѣтить такія интересныя задачи: «I. Пришелъ христіянинъ въ торгъ и принесъ лукошко яицъ. И торговцы его спрошали: много-ли у тебя въ томъ лукошкѣ яицъ? И христіянинъ молвилъ имъ такъ: язъ, господине, всего не помню на перечень, сколько въ томъ лукошкѣ яицъ. Только язъ помню: перекладывалъ язъ тѣ яйца изъ лукошка по 2 яйца, ино одно яйцо лишнее осталось на земли; и язъ клалъ въ лукошко по 3 яйца, ино одно же яйцо осталось; и язъ клалъ по 4 яйца, ино одно же яйцо осталось; и язъ клалъ по 5 яицъ, ино одно же яйцо осталось: и язъ ихъ клалъ по 6 яицъ, ино одно же яйцо осталось; и язъ клалъ по 7 яицъ, ино все посему пришло. Ино, сколько яицъ въ томъ лукошкѣ было, сочти ми? Придетъ было 721. II. Левъ съѣлъ овцу однимъ часомъ, а волкъ съѣлъ овцу въ 2 часа, а песъ съѣлъ овцу въ 3 часа. Ино, хощешь вѣдати, сколько бы они всѣ три: левъ, волкъ и песъ овцу съѣли вмѣстѣ вдругь и сколько бы они скоро ту овцу съѣли, сочти ми [11])?

III. О деньгахъ въ кучѣ вѣдати. Аще хощеши въ кучѣ деньги вѣдати, и ты вели перевесть по 3 деньги. А что останется отъ 3-хъ—2 или 1, и ты за 1 по 70. Да опять вели перевести по 5, и что останется—4 или 3, или 2, или 1, и ты за 1 клади по 21. Да опять вели перевести по 7, и что останется — 6 или 5, или 4, или 3, или 2, или 1, и ты тако же за всякій 1 клади по 15. Да что въ остаткахъ перечни родились, и тѣ перечни сочти вмѣсто, а сколько станетъ, и ты изъ того перечню вычитай по 105, и что останется отъ сто пяти или сама сто пять, то столько въ кучѣ и есть».

Немаловажной статьей среди математическихъ развлеченій были магическіе квадраты. Что такое магическій квадратъ? Это рядъ чиселъ отъ 1 и до какого-нибудь предѣла, размѣщенныхъ по клѣткамъ квадрата такъ, что сумма чиселъ по діагоналямъ и по сторонамъ остается постоянной. Вотъ примѣры, взятые изъ сборника Алькуина (этотъ ученый особенно любилъ магическіе квадраты):

Как постепенно дошли люди до настоящей арифметики [без таблиц] - i_123.jpg
Как постепенно дошли люди до настоящей арифметики [без таблиц] - i_124.jpg

Они встръчаются въ сочиненiяхъ секты «Чистыхъ братьевъ», существовавшей въ X в. по Р. X. въ г. Аль-Бассра. Эта секта приписывала магическимъ квадратамъ особенную таинственную силу. Вѣрили, что они способны измѣнить расположеніе звѣздъ при рожденіи младенца и помочь ему.

Въ концѣ ариѳметики Іоанна Севильскаго (1150 года) приведенъ такой магическій квадратъ:

Как постепенно дошли люди до настоящей арифметики [без таблиц] - i_125.png

Объясненія не дано, только помѣщены тѣ же самыя черточки, какія и на этомъ чертежѣ.

Исторія алгебры.

Хотя народы древвяго міра не знали нашей алгебры, но это не мѣшало имъ заниматься такими вопросами, которые принадлежатъ, собственно говоря, алгебрѣ. Еще у египтянъ въ древнѣйшей рукописи-папирусѣ Ринда рѣшаются уравненія первой степени съ однимъ неизвѣстнымъ; въ этихъ уравненіяхъ мы встрѣчаемъ и знаки, напр., своеобразный знакъ равенства / / . Задача помѣщена, между прочимъ, такая: «⅔ цѣлаго числа вмѣстѣ съ его ½, и 1/7 и съ этимъ же цѣлымъ числомъ даютъ 33, найти неизвѣстное»; прежде всего отбираются извѣстные члены въ одну часть, а неизвѣстные въ другую, коэффиціенты при неизвѣстныхъ представляются основными дробями (т. е. съ числителемъ 1) или же выражаются въ одинаковыхъ доляхъ и складываются; величина неизвѣстнаго опредѣляется такъ: въ первомъ случаѣ умножается коэффиціентъ на подходящее число, такъ чтобы въ произведеніи получился извѣстный членъ, а во второмъ множатъ извѣстный членъ на знаменателя коэффиціента и полученное дѣлятъ на числителя.

Греческіе ученые занимались алгеброй въ періодъ времени съ VI ст. до Р. X. и кончая IV ст. по Р. X. Они разработали нѣсколько отдѣловъ ея, но ихъ труды идутъ въ иномъ направленіи, чѣмъ какого держится новѣйшая математика, именно они носятъ на себѣ геометрическую окраску.

Прежде всего Пиѳагоръ (въ VI ст. до Р. X.) и Платонъ (въ V ст.) рѣшили въ цѣлыхъ числахъ уравненіе х2+y2=z2.

Пиѳагоръ далъ такія формулы:

Как постепенно дошли люди до настоящей арифметики [без таблиц] - i_126.png

гдѣ а равно любому нечетному числу; по Платону

Как постепенно дошли люди до настоящей арифметики [без таблиц] - i_127.png

гдѣ а любое четное число.

Діофантъ, жввшій въ Александріи въ 4 в. по Р. X., оказалъ алгебрѣ большія услуги. До него древніе не знали употребленія буквъ при доказательствахъ въ общемъ видѣ, Діофантъ же первый сталъ вводить различные знаки для неизвѣстныхъ величинъ, главнымъ образомъ греческія буквы; ему обязана своей разработкой глава объ уравненіяхъ, именно объ уравненіяхъ первой степени со многими неизвѣстными и о полныхъ квадратныхъ уравненіяхъ. Вотъ примѣръ изъ Діофанта:

x + y = 10, x2 + y2 = 68

дѣлимъ 1-е уравненіе на 2 и получаемъ

Как постепенно дошли люди до настоящей арифметики [без таблиц] - i_128.png

теперь положимъ, что

Как постепенно дошли люди до настоящей арифметики [без таблиц] - i_129.png

тогда

Перейти на страницу:
Комментариев (0)
название