Том 9. Загадка Ферма. Трехвековой вызов математике
Том 9. Загадка Ферма. Трехвековой вызов математике читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Уайлс выбрал Каца не только за его знания, но и потому, что был уверен: Кац сохранит все в тайне. И он не ошибся. Нужно было организовать совместную работу так, чтобы вместе обсуждать доказательство и рассматривать уравнения, но при этом не вызвать подозрений у коллег. Уайлс и Кац нашли остроумный выход. Первый объявил, что будет вести новый курс в докторантуре под названием «Вычисления на эллиптических кривых». Как и все подобные курсы, его могли посещать студенты и преподаватели. Программой курса было не что иное, как поэтапное изложение доказательства Уайлса. Кац записался на этот курс и мог спокойно проверять различные этапы доказательства, не вызывая никаких подозрений. Немногие докторанты, которые записались на курс, быстро перестали ходить на занятия: материал оказался для них слишком сложен. «На этом уровне, если вы не знаете, какова цель вычислений, то проследить за ними невозможно. Более того, следить за сложными выкладками трудно даже в том случае, когда вам известно, куда они ведут. Через несколько недель я остался единственным слушателем», — вспоминает Кац.
* * *
ОЗАРЕНИЯ
Во время работы над теорией Ивасавы применительно к доказательству теоремы Ферма Уайлс любил гулять у озера неподалеку от университета, чтобы расслабиться и, как говорил он сам, «дать подсознанию поработать». Уверенность в том, что подсознание всегда работает над решением задачи, присуща всем творческим личностям, и в особенности математикам. Французский математик Анри Пуанкаре живо описывает подобное озарение в тот миг, когда он понял, что фуксовы функции (позднее они получили название автоморфных) связаны с геометрией Лобачевского: «Тогда я уехал из Кана… чтобы записаться на геологическую экскурсию. События, произошедшие в пути, заставили меня забыть о моей работе по математике. <…> Мы переезжали с места на место на омнибусе. И ровно в тот момент, когда я поставил ногу на ступеньку, ко мне неожиданно пришла мысль, никак не связанная с тем, о чем я думал до этого. <…> По возвращении в Кан я спокойно проверил мою догадку».
* * *
Сотрудничество оказалось плодотворным, и, кроме того, Кац не мог найти в доказательстве Уайлса ни единой ошибки. Для пущей уверенности Уайлс посвятил в заговор еще одного человека — Питера Сарнака, своего коллегу по Принстонскому университету. «Думаю, что я вот-вот докажу последнюю теорему Ферма», — признался Уайлс потрясенному Сарнаку. «В ту ночь я не смог сомкнуть глаз», — признается последний.
Однако нужно было преодолеть еще одно, последнее препятствие. Некоторые эллиптические кривые по-прежнему не поддавались. Именно тогда на горизонте снова возникла фигура Барри Мазура: именно его статья навела Уайлса на мысль изменить один из рассматриваемых параметров. Уайлс вспоминает:
«Я уточнял детали доказательства, время летело незаметно, и в тот день я даже забыл поесть. Настало время пить чай, я спустился с чердака, и Нада (жена Уайлса. — Примеч. автора) удивилась, почему я спустился так поздно… и я сказал, что, по-моему, доказал последнюю теорему Ферма. Я был уверен, что решение было у меня в руках. Джон Коутс, мой руководитель в Кембридже, через несколько дней собирался провести конференцию. Мне показалось, что именно эта конференция как нельзя лучше подойдет, чтобы представить мое доказательство. Это был мой старый дом, именно там я защитил докторскую».
Конференция в Кембридже должна была состояться через несколько дней, с 21 по 23 июня, и Уайлс неутомимо приводил в порядок результаты последних семи лет работы. Окончательный вариант рукописи насчитывал 200 страниц и был закончен как раз тогда, когда нужно было садиться на самолет и лететь в Великобританию.
Обложка видеокассеты с фильмом о последней теореме Ферма. Фильм был снят в июле 1993 года. В него вошли интервью с различными математиками, в частности, Эндрю Уайлсом и Кеном Рибетом.
Англичанин Джон Хортон Конвей в 1993 году был ярчайшей звездой на кафедре математики Принстонского университета. Он был признанным экспертом в геометрии, теории групп и теории игр. Кроме того, он изобрел один из первых и самых популярных клеточных автоматов — игру «Жизнь». 23 июня Конвей, не изменявший привычке рано вставать, первым открыл двери кафедры. Несколько недель назад один из его коллег, Эндрю Уайлс, отправился на конференцию в Кембридж, и в течение уже нескольких дней до Конвея, активного члена международного математического сообщества, доносились самые разные слухи. Говорили, что Уайлс достиг выдающегося, удивительного результата, однако подробности были неизвестны. С первыми лучами утренней зари, осветившими горы бумаг и книг, которыми был заполнен его кабинет, Конвей включил компьютер, чтобы прочитать почту, пришедшую прошлой ночью. Одним из последних загрузилось письмо, написанное в 5 часов 53 минуты. Его тема звучала просто: «Уайлс доказал великую теорему Ферма».
Уайлс вернулся в Принстон в пятницу. Он чувствовал себя эмоционально опустошенным. «Почти семь лет я только и делал, что работал над этой задачей, — признался Уайлс. — И вскоре все отошло на второй план. Я забыл, каково это — вставать утром и думать о чем-то другом». На Уайлса обрушился шквал поздравлений. Некоторые благодарили его за то, что смогли при жизни увидеть доказательство теоремы Ферма. Резонанс был столь велик, что (небывалый случай!) американский журнал People включил Уайлса в список 25 самых интригующих людей года.
Достижение Уайлса еще было темой репортажей и телепередач, а научный мир уже приступил к неблагодарному, но необходимому занятию: доказательство должен был проверить комитет экспертов. Это было необходимо, чтобы подтвердить его правильность. Для такого сложного доказательства, окончательный вариант которого занимал почти 200 страниц, проверка могла занять несколько месяцев. Хотя в ходе подобных проверок не раз выявлялись грубые ошибки (например, как было за пять лет до этого с доказательством Мияоки), почти все считали, что это лишь простая формальность, учитывая, насколько тщательно Уайлс проверил свое доказательство. Никто также не думал, что доказательство будет полностью безошибочным: как правило, эксперты находят мелкие неточности, которые в большинстве случаев не влияют на ход решения и которые можно легко исправить.
Уайлс решил опубликовать доказательство в научном журнале «Математические открытия» (Inventiones Mathematicae), редактором которого был не кто иной, как Барри Мазур. Мазур поручил проверку группе экспертов, среди которых были Герд Фалтингс и Ник Кац. Последний весь июль и август строчку за строчкой проверял доказательство Уайлса, в частности, его третью главу объемом в 70 страниц. Каждый день проверка проходила по одному и тому же принципу: если Кац сомневался в каком-то этапе доказательства, он отправлял сообщение Уайлсу, который всегда с удовольствием отвечал. За исключением одного случая.
Кац проверил примерно две трети главы, когда не смог понять очередной этап доказательства. Он требовал применения сложного математического инструмента — системы Эйлера, которая была взята из работ Колывагина — Флаха. И Кац, и Уайлс проверили эту, одну из самых запутанных, частей доказательства во время придуманного ими курса.
На этот раз вместо письма по электронной почте Кац отправил свои вопросы по факсу. Уайлс ответил с привычной быстротой, Кац остался неудовлетворен ответом и повторил вопрос, добавив невинную фразу: «Эндрю, я все равно не понимаю». Они опять обменялись факсами, и снова безуспешно. В сентябре Уайлсу не осталось другого выбора, кроме как признать, что в доказательстве что-то не так.