Том 27. Поэзия чисел. Прекрасное и математика
Том 27. Поэзия чисел. Прекрасное и математика читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Существуют и другие причины, по которым следует уделить внимание истории теоремы. Эти причины имеют отношение к математике в эмоциональном контексте — я имею в виду эпизод с принесением в жертву буйвола. Хотя Диоген Лаэртский приписывает это жертвоприношение Фалесу, большинство классических историков считают, что гекатомбу принес Пифагор, открыв свою знаменитую теорему. Как гласит словарь, гекатомба — это «жертвоприношение из 100 быков в Древней Греции».
Гекатомба Пифагора была более скромной, в жертву определенно не было принесено сто быков — тем не менее различные авторы, среди которых Вергилий, Цицерон, Плутарх, Диоген Лаэртский и другие, упоминают об этом жертвоприношении, хотя и расходятся во мнении, кто именно его совершил: Пифагор или Фалес. Эти жертвы были наполнены множеством скрытых смыслов, связанных с основными жизненными потребностями людей, их неизбывным страхом или самыми сокровенными заботами и опасениями. Не будем забывать, что гекатомбы изначально обладали религиозным, магическим и мистическим значением. Они приносились, чтобы избежать бедствий и отвести проклятие богов, выиграть войну или положить конец голоду или болезням.
И тот факт, что гекатомба подробно описывается в связи с простой геометрической теоремой, должен навести читателя на определенные мысли. Кто-то скажет, что гекатомбы, приписываемые Пифагору или Фалесу, не имеют достаточных исторических доказательств, вполне возможно, что они являются всего лишь легендой. Но в этом случае следует задуматься еще больше: почему Витрувий, Цицерон, Плутарх, Диоген Лаэртский и многие другие авторы, серьезные и занятые люди, потрудились придумать или передать потомкам легенду (к тому же довольно кровавую), чтобы восславить нечто столь незначительное, как открытие математической теоремы? Почему они связали результат интеллектуального труда, давший начало всей древнегреческой математике, это исключительно абстрактное явление с таким эмоциональным событием, как жертвоприношение?
Как и в случае с греческой скульптурой, понять развитие греческой математики, ее путь от первых теорем до тех высот, которых она достигла позднее, нам поможет история. Путь, пройденный древнегреческой математикой, можно оценить в полной мере, если сравнить теорему, о которой мы рассказали выше, с решением задачи о вычислении площади сегмента параболы, которое привел Архимед (об этой задаче мы рассказали в главе 1).
Чтобы определить эстетическую ценность чего-либо, что кажется менее красивым, чем древнегреческая синтетическая геометрия, например позиционной системы счисления или элементарных методов алгебры, как и для того, чтобы оценить романскую скульптуру, будет полезно узнать, что в этих случаях эстетика заключена в символическом потенциале простоты. Если хорошо подумать, то мы поймем, что зачастую простота есть не более чем продукт нашего образования: наша система счисления кажется нам простой, потому что мы изучали ее в начальной школе.
Но для древних греков, которым была практически неизвестна алгебра, наша система счисления показалась бы крайне сложной. Как можно оценить концептуальную сложность системы счисления или алгебры, не зная, сколь медленным и трудным был исторический процесс ее появления и развития? Может быть, мы оценим греков по достоинству, если будем знать, какую важную роль они сыграли в XVII веке, при создании намного более сложных разделов математики, в частности аналитической геометрии и, позднее, дифференциального и интегрального исчисления?
Даже для того чтобы оценить эстетику анализа бесконечно малых, необходимо знать его историю. Нужно знать, что для его создания потребовалось совершить несколько шагов вперед относительно древнегреческой математики, знать, каким был вклад анализа бесконечно малых в научную революцию, которая произошла в Европе в XVI–XVII веках и благодаря которой наука достигла таких успехов. Наконец, нужно знать, какое влияние анализ бесконечно малых оказал на развитие не только математики, но и физики.
Гомбрих в своей «Истории искусства» писал, что современное искусство, как и любое другое, возникло в ответ на вставшие перед ним проблемы. Так, революционные процессы, столь радикально изменившие искусство начиная с середины XIX века, были запущены тогда, когда художники задались вопросом: почему они ограничивались максимально точным изображением того, что видели перед собой, будь то пейзаж или группа людей? Тогда же возник вопрос о том, какова истинная функция художника. Кто он — безмолвный свидетель, который должен точно передавать то, что он видит, подобно фотокамере, или действующее лицо произведения, отражающее в картине прошлый эмоциональный опыт? Используя творческую свободу художника в качестве одного из главных аргументов, искусство склонялось в пользу второй точки зрения. В результате возник новый мир, который часто критиковали, порой не ценили и не понимали. Друг друга последовательно сменяли импрессионизм, экспрессионизм, абстракционизм, авангард, экспериментальное искусство и так далее.
Для эстетической оценки этого нового искусства, сложного, иногда странного и даже сумасбродного и как никогда изменчивого, история искусства почти так же важна, как способность видеть.
В XIX веке в математике тоже начался процесс последовательного абстрагирования, кульминацией которого стало помещение практически всей математики в атмосферу теории множеств, на первый взгляд стерильную и инертную. Великим вдохновителем этого процесса был немецкий математик Георг Кантор, а движущей силой — жажда понять и обуздать страшнейшее из математических чудовищ — бесконечность. Словно бы доказывая, что определенные закономерности объединяют даже наиболее далекие друг от друга аспекты одной культуры, словно подтверждая фразу Марселя Пруста о том, что все существующее одновременно есть кажущееся, эволюция математики весьма схожа с процессами, которые происходили в живописи, скульптуре, архитектуре, музыке и литературе. Не напрасно девиз Кантора «суть математики — в ее свободе» содержал отсылку к идее, приверженцами которой являются художники, скульпторы и композиторы.
Бесконечности, ее укротителю Кантору и, разумеется, обстоятельствам, сопутствующим этой истории, посвящены последние страницы этой книги.
Бесконечность можно сравнить со змеиным гнездом: лишь по прошествии нескольких тысяч лет, пережив несколько болезненных укусов, человек осмелился опустить в это гнездо руку. Бесконечность — продукт логической структуры нашего мозга. Эта структура обладает способностью создавать понятия путем отрицания уже известных. На основе того, что воспринимают наши органы чувств, естественным образом возникает понятие конца, границы, финала, то есть конечного, имеющего предел.
К понятию бесконечного мы приходим через отрицание конечного, а не на основе чувств или ощущений. Парадоксально, что хотя бесконечность является продуктом логической структуры нашего разума, она обнаруживает некоторую несовместимость с логикой, точнее со здравым смыслом, который часто путают с логикой. Здравый смысл неизбежно находится под влиянием информации, поступающей от органов чувств, а эта информация обязательно тем или иным способом отражает понятие конечного или ограниченного. Таким образом, бесконечность едва ли имеет отношение к здравому смыслу, и неудивительно, что она сильно пугала греков, для которых логика и здравый смысл были основой культурной революции.
История об Ахиллесе и черепахе, логическая головоломка Зенона Элейского о делимости и движении, столь же глубоко укоренилась в массовом сознании, что и теорема Пифагора, «Дон Кихот» или Девятая симфония Бетховена. В своем парадоксе Зенон тайком использовал бесконечность. Отзвуки бесконечности слышны и в пифагорейском кризисе, причиной которого стало открытие иррациональных чисел: так, нельзя было представить в виде дроби, и чтобы точно выразить значение этого числа, требовалось записать бесконечно много знаков.