-->

Том 12. Числа-основа гармонии. Музыка и математика

На нашем литературном портале можно бесплатно читать книгу Том 12. Числа-основа гармонии. Музыка и математика, Арбонес Хавьер-- . Жанр: Математика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Том 12. Числа-основа гармонии. Музыка и математика
Название: Том 12. Числа-основа гармонии. Музыка и математика
Дата добавления: 16 январь 2020
Количество просмотров: 248
Читать онлайн

Том 12. Числа-основа гармонии. Музыка и математика читать книгу онлайн

Том 12. Числа-основа гармонии. Музыка и математика - читать бесплатно онлайн , автор Арбонес Хавьер
В мире существует несколько основных видов искусства, но музыка, безусловно, занимает в этом ряду главенствующую позицию. Неспроста многие великие мыслители отдавали пальму первенства именно музыке: она — удивительный симбиоз чистого вдохновения и строгого расчета, полета фантазии и рационального подхода. Музыка — живое доказательство единства творчества и математики. Из этой книги читатель почерпнет множество интересных фактов. Какие произведения нельзя сыграть, не разгадав их загадку? Почему существуют гармонические и диссонирующие аккорды? Благодаря чему мы в состоянии на слух отличить скрипку от трубы? Может ли певец разбить стекло силой своего голоса? Как сформировалась современная музыкальная нотация и каким правилам она подчиняется? При ответе на эти и многие другие вопросы не обойтись без математики.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 16 17 18 19 20 21 22 23 24 ... 31 ВПЕРЕД
Перейти на страницу:
Том 12. Числа-основа гармонии. Музыка и математика - _179.jpg

Каждый аргумент этой функции определяет какой-либо параметр звука: высоту, интенсивность или тембр. Высота определяется частотой колебаний. Низким частотам соответствуют низкие звуки, высоким — высокие.

Том 12. Числа-основа гармонии. Музыка и математика - _180.jpg

Высота звука пропорциональна его частоте.

Спектр частот, различаемых ухом, индивидуален для каждого человека и зависит от возраста, но, как правило, он охватывает 11 октав:

Том 12. Числа-основа гармонии. Музыка и математика - _181.jpg

«Интенсивность», то есть звуковая энергия, переносимая звуковой волной за единицу времени, зависит от амплитуды звуковых колебаний: чем выше громкость, тем больше амплитуда волны. Интересно, что нижний порог слышимости соответствует звуковому давлению в 2·10-4 бар, а болевой порог соответствует давлению в 200 бар.

Том 12. Числа-основа гармонии. Музыка и математика - _182.jpg

Интенсивность звука пропорциональна амплитуде звуковой волны.

Единица измерения громкости звука — бел, хотя на практике используется децибел (дБ), равный одной десятой части бела. При определении этой величины учитывалось, что интенсивность ощущения звука человеком пропорциональна не интенсивности звука, а его логарифму. Иными словами, при относительно высокой интенсивности звука неприятные ощущения нарастают со все большей скоростью. Шкала интенсивности звука начинается с 0 дБ (порога слышимости) и заканчивается 120 или 140 дБ — болевым порогом. В следующей таблице приведены некоторые примеры физических явлений и соответствующей им интенсивности звука:

Том 12. Числа-основа гармонии. Музыка и математика - _183.jpg

* * *

ТРЕХМЕРНЫЕ ВОЛНЫ

Чтобы лучше понять природу звука, интересно рассмотреть различные виды волн. Существуют одномерные волны, которые распространяются вдоль прямой линии. Другие распространяются на поверхности и являются двумерными. К таким волнам относятся колебания, возникающие при падении камня на поверхность воды. Фронт этих волн представляет собой концентрические окружности, в центре которых расположен источник звука. Звуковые волны относятся к третьему виду — трехмерным волнам. Фронтом звуковой волны является сферическая поверхность. Хотя звуковые волны описываются синусоидальными кривыми, звук распространяется в трехмерном пространстве. Интенсивность звука — это энергия потока, проходящего через поверхность единичной площади. Так как речь идет о ряде концентрических сфер, интенсивность рассчитывается по следующей формуле:

I = P/S

где — интенсивность, Р — энергия, — площадь поверхности. Так как S = 4π2, то интенсивность звука обратно пропорциональна квадрату расстояния до его источника.

* * *

Наконец, тембр определяет «индивидуальность» звука. Так, мы узнаем именно тембр голоса определенного человека. Тембр также позволяет различать звуки одинаковой интенсивности и высоты, извлекаемые из разных инструментов. Какова же физическая природа тембра? Чтобы ответить на этот вопрос, необходимо подробнее изучить природу звука.

Чистые и настоящие тона

График синусоидальной функции соответствует чистым звуковым колебаниям, которые не так часто встречаются в реальном мире. Примерами чистых звуков являются звуки камертона, свист, а также звук трения мокрого пальца о стекло.

Том 12. Числа-основа гармонии. Музыка и математика - _184.jpg

Однако звук гитарной струны, колокола или флейты образуется основными колебаниями вкупе со множеством волн меньшей интенсивности и большей частоты. Эти волны называются обертонами. Любой звук, который не является чистым, состоит из множества одновременно звучащих звуков. В основе анализа отдельных обертонов каждого звука лежат открытия, совершенные французским математиком Жаном Батистом Жозефом Фурье (1768–1830), который доказал, что любую периодическую несинусоидальную волну можно разложить в ряд синусоидальных волн.

Том 12. Числа-основа гармонии. Музыка и математика - _185.jpg

Звуковую волну можно представить как совокупность волн ее отдельных обертонов и волны основного звука. Этот кажущийся хаос в действительности представляет собой строго упорядоченную систему. В зависимости от структуры материала источника звука, окружающей среды, резонаторов и других факторов формируются обертоны основного тона, частоты которых непосредственно связаны с частотой основного звука. При анализе и оценке обертоны упорядочиваются и нумеруются в порядке возрастания частоты. В целом можно говорить, что с ростом частоты звука увеличивается его интенсивность. Однако интенсивность обертонов определяется множеством факторов, среди которых форма источника звука, форма полостей в нем, материал, из которого он изготовлен, и многие другие параметры. Сочетание этих параметров определяет, какие обертоны будут иметь большую интенсивность, какие — меньшую. Таким образом, многообразие возможных значений параметров порождает различные тембры, наделяющие звук особым звучанием.

Звук, издаваемый инструментом, обладает следующими четырьмя характеристиками, связанными с распространением звуковых волн:

— атака — время от начала игры на инструменте до момента, когда звук достигает наибольшей высоты;

— спад — временной интервал от точки наибольшей высоты до момента стабилизации звука;

— задержка — время, в течение которого извлечение звука продолжается, а его высота остается неизменной;

— затухание — время, в течение которого высота звука падает после того, как было прекращено извлечение звука.

Том 12. Числа-основа гармонии. Музыка и математика - _186.jpg

График, соответствующий извлечению звука постоянной частоты.

Суперпозиция волн

При построении графика звуковой волны образуется кривая, которая получается наложением друг на друга отдельных волн, соответствующих основному звуку и его обертонам. Рассмотрим простой пример наложения волн для двух звуков одинаковой частоты, но разной высоты. Если фазы звуковых колебаний совпадают, амплитуда звуковых колебаний увеличивается:

Том 12. Числа-основа гармонии. Музыка и математика - _187.jpg

Напротив, если колебания находятся в противофазе, то амплитуда звуковых колебаний уменьшается:

Том 12. Числа-основа гармонии. Музыка и математика - _188.jpg

Каким образом эта особенность проявляется на практике? Не углубляясь в подробности, скажем, что этот эффект можно наблюдать в концертных залах: многочисленный хор звучит заметно громче, чем ансамбль из четырех или восьми исполнителей, а струнный оркестр — громче, чем струнный квартет.

В более сложных случаях, например, когда звук издается музыкальным инструментом, звуковая волна будет несинусоидальной, так как она будет состоять из множества отдельных волн. Благодаря преобразованию Фурье при анализе периодических волн можно определить частоту каждой составляющей.

1 ... 16 17 18 19 20 21 22 23 24 ... 31 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название