Том 12. Числа-основа гармонии. Музыка и математика

На нашем литературном портале можно бесплатно читать книгу Том 12. Числа-основа гармонии. Музыка и математика, Арбонес Хавьер-- . Жанр: Математика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Том 12. Числа-основа гармонии. Музыка и математика
Название: Том 12. Числа-основа гармонии. Музыка и математика
Дата добавления: 16 январь 2020
Количество просмотров: 254
Читать онлайн

Том 12. Числа-основа гармонии. Музыка и математика читать книгу онлайн

Том 12. Числа-основа гармонии. Музыка и математика - читать бесплатно онлайн , автор Арбонес Хавьер
В мире существует несколько основных видов искусства, но музыка, безусловно, занимает в этом ряду главенствующую позицию. Неспроста многие великие мыслители отдавали пальму первенства именно музыке: она — удивительный симбиоз чистого вдохновения и строгого расчета, полета фантазии и рационального подхода. Музыка — живое доказательство единства творчества и математики. Из этой книги читатель почерпнет множество интересных фактов. Какие произведения нельзя сыграть, не разгадав их загадку? Почему существуют гармонические и диссонирующие аккорды? Благодаря чему мы в состоянии на слух отличить скрипку от трубы? Может ли певец разбить стекло силой своего голоса? Как сформировалась современная музыкальная нотация и каким правилам она подчиняется? При ответе на эти и многие другие вопросы не обойтись без математики.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 13 14 15 16 17 18 19 20 21 ... 31 ВПЕРЕД
Перейти на страницу:

Также существует неизометрическое преобразование, которое применяется в музыке. Оно называется масштабирование. Масштабирование увеличивает или уменьшает один из линейных размеров фигуры. При этом преобразовании соотношение сторон фигуры может как сохраняться неизменным, так и изменяться. Если мы хотим применить это преобразование в музыкальной нотации, необходимо четко различать два «измерения» музыкальной плоскости.

Том 12. Числа-основа гармонии. Музыка и математика - _154.jpg

Горизонтальное масштабирование

Наиболее наглядными примерами этого преобразования являются сжатие и растяжение вдоль временной оси. Чтобы произвести такое преобразование и, следовательно, изменить скорость, с которой исполняется произведение, необходимо изменить темп метронома:

Том 12. Числа-основа гармонии. Музыка и математика - _155.jpg

Изменение скорости путем изменения темпа метронома.

Однако порой интереснее изменить скорость исполнения мелодии, сохраняя темп метронома неизменным. Для этого ноты заменяются эквивалентными нотами меньшей длительности:

Том 12. Числа-основа гармонии. Музыка и математика - _156.jpg

«Немецкий реквием» Иоганнеса Брамса

Немецкий композитор Иоганнес Брамс (1833–1897), представитель романтизма, использовал масштабирование в своем знаменитом «Немецком реквиеме». В первых тактах соло (линия партитуры с подписью soprano solo) мелодия сопрано образована восьмыми нотами. Теноры повторяют эту же мелодию, но длительность нот удваивается: восьмые ноты заменяются четвертными, четвертные — половинными и так далее. В результате сопрано исполняет мелодию в два раза быстрее, чем теноры (tenors на партитуре):

Том 12. Числа-основа гармонии. Музыка и математика - _157.jpg

Puttin' on the Ritz

Автором этой известной мелодии является американский композитор Ирвинг Берлин (1888–1989) — «величайший песенный композитор всех времен», по словам его соотечественника Джорджа Гершвина. Эту песню, которая впервые прозвучала в 1929 году, впоследствии исполняли Бенни Гудмен, Фред Астер и другие известные певцы. Текст песни довольно прост, но, несмотря на это, она отличается запутанной ритмикой. В мелодии четыре раза повторяется очень простая фигура из четырех нот, но эти четыре повторения занимают не четыре такта, а чуть больше трех, за счет чего образуется неравномерный ритм:

Том 12. Числа-основа гармонии. Музыка и математика - _158.jpg

Берлину удалось достичь этого удивительного эффекта за счет «сжатия» нот. На следующей иллюстрации можно видеть, как четыре ноты, сгруппированные в фигуры и обозначенные кругами под номерами от 1 до 4, следуют друг за другом. Стрелкой обозначена граница такта.

Том 12. Числа-основа гармонии. Музыка и математика - _159.jpg

Вертикальное масштабирование

Что происходит при вертикальном масштабировании? Это преобразование — самое необычное из рассмотренных нами. Его сложнее всего выполнить и весьма непросто услышать в музыкальной композиции. При вертикальном масштабировании все интервалы пропорционально расширяются. В первом примере интервалами мелодии являются две терции. Во втором примере терции преобразуются в квинты.

Том 12. Числа-основа гармонии. Музыка и математика - _160.jpg

Подобное повторение расширенной мелодической кривой исходной мелодии иногда может давать пародийный эффект. Известный пример вертикального мас штабирования связывает между собой Баха и Джона Кейджа и упоминается в классической научно-популярной книге «Гедель, Эшер, Бах» американского автора Дугласа Хофштадтера (р. 1945).

Если использовать латинскую систему, в которой ноты обозначаются буквами от А до G, то с помощью масштабирования можно превратить тему ВАСН («Бах») в CAGE («Кейдж»).

Том 12. Числа-основа гармонии. Музыка и математика - _161.jpg

Интервалы темы BACH: —1|+3 |—1.

Умножив эти интервалы на 3, получим —3 |+9 |—3, что почти совпадает с темой CAGE, интервалы которой равны —3 |+10 |—3.

Гармоническая симметрия

Симметричные аккорды

Одна октава состоит из 12 полутонов. Эти 12 полутонов можно разделить на симметричные аккорды всего двумя способами: в первом случае аккорды из 3 нот будут разделены 4 полутонами, во втором случае аккорды из 4 нот будут разделены 3 полутонами.

Том 12. Числа-основа гармонии. Музыка и математика - _162.jpg

В первом случае образуется аккорд увеличенной квинты, состоящей из двух больших терций, во втором — аккорд уменьшенной септимы. Благодаря своей симметричности этот аккорд занял очень важное место в истории музыки, так как его можно «прочитать» многими способами одновременно.

Симметричные звукоряды

В своей книге «Техника моего музыкального языка» французский композитор Оливье Мессиан (1908–1992) приводит классификацию звукорядов, которые он называет ладами ограниченной транспозиции. В этих звукорядах, ступени которых образуют полную октаву, интервалы, разделяющие ноты, распределяются симметрично. Такие звукоряды основаны на хроматической системе из 12 звуков и состоят из различных симметричных групп. После определения звукоряда он последовательно транспонируется до тех пор, пока при транспозиции не образуется звукоряд, в котором будут полностью повторяться ноты исходной группы.

Первый лад в классификации Мессиана называется ладом с целыми тонами:

Том 12. Числа-основа гармонии. Музыка и математика - _163.jpg

В этом ладу допускается всего два варианта: первый начинается с до, второй — с до-диез. В ладу, который начинается с ре, повторяются ноты исходного лада.

Второй лад — уменьшенный октатонический звукоряд, в котором чередуются полутона и целые тона. Этот лад делится на четыре группы по три ноты и допускает три транспозиции.

Том 12. Числа-основа гармонии. Музыка и математика - _164.jpg

Третий лад образован последовательностями тон — полутон — полутон, состоит из трех групп по четыре звука и допускает четыре транспозиции.

Том 12. Числа-основа гармонии. Музыка и математика - _165.jpg

Порядок интервалов в четвертом ладу таков: полутон — полутон — полтора тона (3 полутона) — полутон, шесть транспозиций.

Том 12. Числа-основа гармонии. Музыка и математика - _166.jpg

Пятый лад образует две симметричные группы из четырех звуков: полутон — два тона — полутон и допускает шесть транспозиций.

Том 12. Числа-основа гармонии. Музыка и математика - _167.jpg

Шестой лад состоит из двух групп по шесть звуков (тон — тон — полутон — полутон) и допускает шесть транспозиций.

Том 12. Числа-основа гармонии. Музыка и математика - _168.jpg
1 ... 13 14 15 16 17 18 19 20 21 ... 31 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название