-->

Мир математики. т.3. Простые числа. Долгая дорога к бесконечности

На нашем литературном портале можно бесплатно читать книгу Мир математики. т.3. Простые числа. Долгая дорога к бесконечности, Грасиан Энрике-- . Жанр: Математика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Мир математики. т.3. Простые числа. Долгая дорога к бесконечности
Название: Мир математики. т.3. Простые числа. Долгая дорога к бесконечности
Дата добавления: 16 январь 2020
Количество просмотров: 306
Читать онлайн

Мир математики. т.3. Простые числа. Долгая дорога к бесконечности читать книгу онлайн

Мир математики. т.3. Простые числа. Долгая дорога к бесконечности - читать бесплатно онлайн , автор Грасиан Энрике
Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 12 13 14 15 16 17 18 19 20 ... 30 ВПЕРЕД
Перейти на страницу:

е = 2,71882818284590452354…

Это бесконечное десятичное число появляется в математике примерно так же часто, как π. Логарифмы по основанию е называются «натуральными логарифмами».

По вышеприведенному определению, натуральные логарифмы следовало бы обозначать loge, однако на калькуляторах имеются две отдельные клавиши: log — для десятичных логарифмов, а In — для логарифмов по основанию е.

Таким образом, Гаусс сформулировал следующую гипотезу: при больших х значения π(x)/x приближаются к 1/ln x, что можно записать как

π(x)/x примерно = 1/ln x (для больших значений х).

Этот результат является оценкой частоты, с которой простые числа встречаются в последовательности натуральных чисел. Предположим, что Р(N) — число простых чисел, меньших N. Формула утверждает, что с ростом N отношение N/P(N) приближается к натуральному логарифму N.

Это самый простой способ применения формулы Гаусса, если мы хотим оценить, сколько существует простых чисел, меньших, чем заданное число. Например, нам задали следующий вопрос: «Сколько простых чисел в первой тысяче натуральных чисел?»

Возьмем калькулятор и выполним следующие действия:

1) наберем число 1000;

2) нажмем клавишу In;

3) нажмем клавишу 1/х;

4) умножим результат на 1000.

Мы получим число 144,76482730108394255037630630554, что позволит нам дать следующий ответ: «В первой тысяче натуральных чисел встречается примерно 145 простых чисел». Это, конечно, лишь приблизительная оценка, так как на самом деле в первой тысяче 168 простых чисел. Тем не менее, мы должны иметь в виду, что теорема дает все более точный результат при увеличении числа N, и уже с большей уверенностью мы можем сказать, что, например, в первом миллиарде 5,1 % натуральных чисел являются простыми.

Теперь мы можем расшифровать, что именно Гаусс имел в виду, когда оставил заметку в своей записной книжке:

«Простые числа, меньшие 

Мир математики. т.3. Простые числа. Долгая дорога к бесконечности - _53.jpg

«Простые числа, меньшие а» — то же самое, что и π(a);

«» в современных терминах записывается как In a

Мир математики. т.3. Простые числа. Долгая дорога к бесконечности - _60.jpg_0
означает, что равенство наиболее верно для очень больших значений а (когда а стремится к бесконечности).

* * *

КОЛОКОЛООБРАЗНАЯ КРИВАЯ ГАУССА

В возрасте 18 лет Гаусс открыл «метод наименьших квадратов», и это вызвало его особый интерес к теории ошибок. Он разработал метод статистического анализа, в котором нормальное распределение ошибок изображается колоколообразной кривой. Это, без сомнения, самая известная кривая в математике, и ее обычно называют «гауссовой кривой нормального распределения». Этот метод принес значительные доходы и самому Гауссу, когда он начал систематическое изучение тенденций международного фондового рынка. Эти данные печатались в зарубежных газетах, которые постоянно имелись в университетских холлах. Колоколообразная кривая очень пригодилась, и доход, который Гаусс имел от этих исследований, значительно превышал его профессорское жалованье.

Мир математики. т.3. Простые числа. Долгая дорога к бесконечности - _61.jpg

МНОГОУГОЛЬНИК ГАУССА

Построение правильных многоугольников с помощью циркуля и линейки было одной из нерешенных задач еще со времен греческих геометров. Можно было построить лишь многоугольники с тремя, четырьмя, пятью и пятнадцатью сторонами, а также с их удвоенными количествами. 30 марта 1796 г. Гаусс нашел способ построения многоугольника с 17 сторонами. Этот день стал знаменательным днем его карьеры. Тогда же он начал вести научный дневник, охватывающий период 1796–1814 гг. Эти записи считаются в математике настоящим бриллиантом, потому что содержат все научные открытия Гаусса.

Однако, возможно, наиболее важным является то, что в тот день Гаусс решил посвятить себя математике, а не изучению языков и филологии, где также проявилась его гениальность.

Мир математики. т.3. Простые числа. Долгая дорога к бесконечности - _62.jpg

* * *

В настоящее время этот результат известен как «теорема о распределении простых чисел» и является одним из самых важных в истории математики. Хаотическое множество простых чисел, казалось, удалось приручить. Появилась функция для их изучения, которая со временем привела к еще более точным результатам.

Гаусс не дожил до успеха своей теоремы. И это не связано с секретностью, как часто бывало с другими математиками. Не связано это и с подходом Ферма, который не приводил доказательств, ссылаясь на то, что они слишком длинные. У Гаусса хватило бы бумаги для любых доказательств, какими длинными они бы ни были.

Гаусс не дожил до успеха своей теоремы просто потому, что у него не было возможности ее доказать. Благодаря работам Эйлера математика поднялась на новый уровень, где теории формулировались в логической последовательности, оставив в прошлом неопределенные методы и сомнительные практики. Интуиция, являющаяся ключом к любым открытиям, должна была подкрепляться солидной теоретической основой. Доказательство теоремы стало объективным аргументом, который, благодаря простому языку чисел, приобретал статус истины.

Гипотеза Гаусса стала теоремой лишь век спустя: в 1896 г. Жак Адамар (1865–1963) и Шарль Жан Ла Валле Пуссен (1866–1962) одновременно, но независимо друг от друга доказали ее. Из всех теорем в теории простых чисел гипотеза Гаусса занимает особое место с точки зрения истории математики: не только из-за своей красоты, но и из-за огромного влияния, которое она оказала на методы исследований простых чисел.

Мир математики. т.3. Простые числа. Долгая дорога к бесконечности - _63.jpg

Портрет Гаусса изображен на лицевой стороне немецкой банкноты 10 марок на фоне кривой, известной как колоколообразная кривая Гаусса. На обороте банкноты изображен секстант — инструмент, который использовался при создании одной из первых геодезических сетей в мире недалеко от Гамбурга, как показано в нижнем правом углу. Понятие «геодезических», то есть кратчайших линий, соединяющих две точки на поверхности, является ключевым понятием в геометрии и еще одним научным вкладом немецкого гения.

Глава 5

Краеугольные камни

В основе современной теории простых чисел лежат три краеугольных камня: модульная арифметика, комплексные числа и теория аналитических функций. Все они, а особенно последний, требуют существенных математических знаний. Однако некоторые аспекты теории чисел можно легко понять: например, визуализацию функций в четырехмерном пространстве. Это и поможет нам оценить роль дзета-функции Римана в наведении порядка в хаотической последовательности простых чисел.

Магические суммы

Как известно, числа имеют особые символические значения, связанные с различными мистическими верованиями. В западном мире большинство таких символических значений имеет свои корни в Библии или в пифагорейской школе. «Все познаваемое имеет число. Ибо без него невозможно ничего ни понять, ни познать», — писал ученик Пифагора, греческий математик и философ Филолай из Кротона (ок. 480 г. дон. э.).

В эпоху мрачного средневековья передача «культуры чисел» свелась к минимуму. Католическая церковь провела четкое разграничение между различными философскими концепциями мира и теми неоспоримыми принципами, которые соответствовали ее учению. Лишь одной традиции удалось в некоторой степени преодолеть эту нетерпимость: картам Таро. Хотя церковь в конце концов осудила эту систему символов, нумерология Таро сохранилась во многих текстах, которые были настолько двусмысленными, что было неясно, идет там речь о гадании или об арифметике.

1 ... 12 13 14 15 16 17 18 19 20 ... 30 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название