-->

Пятьсот двадцать головоломок

На нашем литературном портале можно бесплатно читать книгу Пятьсот двадцать головоломок, Дьюдени Генри Эрнест-- . Жанр: Математика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Пятьсот двадцать головоломок
Название: Пятьсот двадцать головоломок
Дата добавления: 15 январь 2020
Количество просмотров: 281
Читать онлайн

Пятьсот двадцать головоломок читать книгу онлайн

Пятьсот двадцать головоломок - читать бесплатно онлайн , автор Дьюдени Генри Эрнест

Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.

В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.

Книга доставит удовольствие всем любителям занимательной математики.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 8 9 10 11 12 13 14 15 16 ... 70 ВПЕРЕД
Перейти на страницу:

— Джентльмены, — сказал председатель собрания после подсчета голосов, — я имею удовольствие сообщить, что забастовка утверждена большинством, составляющим четвертую часть оппозиции. (Громкие возгласы одобрения.)

— Господин председатель, — крикнули сзади, — кое-кто из нас не смог сесть.

— Почему?

— Да здесь нет стульев.

— Тогда, быть может, те, кто хотел, но не смог сесть, не откажутся поднять руки... Я вижу, вас двенадцать человек, так что забастовка отменяется большинством в один голос. (Свистки и беспорядок в зале.)

Сколько членов Общества попрошаек участвовало в голосовании?

166. Три брата.Военным властям надлежало решить вопрос, кого из трех сыновей некоего торговца следует освободить от воинской повинности.

— Я вам скажу, на что они способны, — заявил отец. — Артур и Бенджамин могут сделать за 8 дней ту же работу, на которую Артур и Чарлз затратят 9 дней, а Бенджамин и Чарлз — 10.

Поскольку ясно, что участие Чарлза лишь замедляет работу (с кем бы из братьев в паре он ни работал, времени на работу затрачивается больше, чем без него), то он и является самым слабым работником. Властям только это и нужно было узнать.

Нам же любопытно узнать и другое: за сколько дней каждый из братьев в отдельности сможет выполнить одну и ту же работу?

167. Номер дома.Один человек сказал, что дом его друга расположен на длинной улице (причем на той стороне, где стоит дом, дома нумеруются по порядку: 1, 2, 3 и т. д.) и что сумма номеров от начала улицы до дома друга совпадает с суммой номеров от дома друга до конца улицы. Известно также, что на стороне улицы, где расположен дом друга, домов больше 50, но меньше 500.

Каков номер дома, где живет друг рассказчика?

168. Еще одна головоломка с номерами домов.Браун живет на улице, на которой больше 20, но меньше 500 домов (все дома перенумерованы по порядку: 1, 2, 3 и т. д.). Браун обнаружил, что все номера от первого до его собственного включительно в сумме дают половину суммы всех номеров, от первого до последнего включительно.

Каков номер его дома?

169. Третья головоломка с номерами домов.На одной длинной улице Брюсселя дома перенумерованы по одну сторону четными, а по другую нечетными числами (способ нумерации, принятый во многих странах).

1. Если человек живет на нечетной стороне улицы и сумма всех номеров по одну сторону от его дома совпадает с суммой номеров по другую, то сколько домов на этой стороне улицы и каков номер его дома?

2. Если человек живет на четной стороне улицы и сумма всех номеров по одну сторону от его дома совпадает с суммой номеров по другую, то сколько домов на этой стороне улицы и каков номер его дома?

Мы предполагаем, что на каждой стороне улицы расположено больше 50 и меньше 500 домов.

170. Исправьте ошибку.Хильде Вильсон потребовалось умножить некоторое число на 409, но она сделала ошибку, которую часто допускают дети, начинающие изучать арифметику: первую цифру произведения на 4 она поместила не под третьей цифрой справа, как положено, а под второй. (Мы все так делали в детстве, когда в сомножителе встречался 0.) В результате этой маленькой ошибки Хильда получила число, отличающееся ни много, ни мало на 328 320 от правильного ответа.

Какое число Хильда умножала на 409?

171. Семнадцать лошадей.

— Я думаю, что вы знаете эту старую головоломку, — сказал Джеффрис. — Один фермер по завещанию оставил трем своим сыновьям 17 лошадей, которые нужно было разделить между ними в следующих пропорциях: старшему ½, среднему ⅓ и младшему

Пятьсот двадцать головоломок - _43x.gif
. Как разделить лошадей?

— Да, по-моему, мы все ее знаем, — ответил Робинсон, — но она не имеет решения. Тот ответ, который всегда дают, ошибочен.

— Вы имеете в виду, — вступил в разговор Проджерс, — то решение, где сыновья занимают еще одну лошадь у соседа, чтобы получилось 18, а затем берут соответственно по 9, 6 и 2 лошади и возвращают занятую лошадь соседу?

— Вот именно, — сказал Робинсон, — причем каждый сын получает больше, чем ему полагалось.

— Стоп! — воскликнул Бенсон. — Вы не правы. Ведь если бы каждый сын получил больше, чем ему причиталось, то всего лошадей стало бы больше 17, но 9, 6 и 2 дают в сумме ровно 17.

— На первый взгляд это действительно кажется странным, — заметил Робинсон, — но все дело в том, что если бы каждый сын получил положенную ему долю наследства, то всего им досталось бы меньше 17 лошадей. Фактически еще осталась бы нетронутая часть. Задача и в самом деле не имеет решения.

— А вот здесь-то вы все и ошибаетесь, — заметил Джеффрис. — Условия завещания можно выполнить совершенно точно, не покалечив ни одной лошади.

К общему изумлению, он показал, как это сделать. Как поделить лошадей в строгом соответствии с завещанием?

172. Равные периметры.Рациональные прямоугольные треугольники занимали воображение людей еще во времена Пифагора, задолго до нашей эры. Каждому школьнику известно, что стороны таких треугольников, выраженные обычно в целых числах, обладают тем свойством, что квадрат гипотенузы равен сумме квадратов катетов. Так, на рисунке в случае Аквадрат 30 (900) плюс квадрат 40 (1600) равен квадрату 50 (2500); то же верно и в случаях В, С. Легко проверить, что у данных трех треугольников одинаковые периметры. Сумма длин всех сторон равна в каждом случае 120.

Пятьсот двадцать головоломок - _58.png

Можете ли вы найти 6 рациональных прямоугольных треугольников с одинаковым (наименьшим из возможных) периметром? Эта задача не столь трудна, как головоломка «Четыре принца» из моей книги «Кентерберийские головоломки» [11], где требовалось найти четыре таких треугольника равной площади.

173. Потомство коровы.«Допустим, — сказал мой приятель фермер Ходж, — что моя корова в двухлетнем возрасте даст в приплод телку. Допустим также, что она будет приносить по телке каждый год и что каждая из телок, достигнув двухлетнего возраста, последует примеру матери и будет ежегодно приносить по телке и т. д. Скажи-ка теперь, каково будет потомство этой коровы через 25 лет?»

Из пояснений Ходжа явствовало, что время он отсчитывал со дня рождения самой первой коровы и что за все 25 лет у него не будет ни своей говядины, ни своей телятины.

174. Сумма, равная произведению.

— Подумать только, — сказал мне один человек, — существуют два числа, сумма которых равна их произведению; то есть получится одно и то же, сложите ли вы их или перемножите между собой. Это 2 и 2, так как их сумма и произведение равны 4.

Далее он допустил грубую ошибку, сказав:

— Я обнаружил, что это единственные два числа, обладающие таким свойством.

Я попросил его написать любое число, сколь угодно большое, и сказал, что немедленно укажу другое число так, чтобы их сумма и произведение совпадали. Ему понравилось 987 654 321, и я быстро написал второе число.

Какое именно?

Оказывается, для любого наперед заданного числа существует другое число, вместе с которым оно обладает указанной особенностью. Если читателю об этом не известно, то, быть может, данная задача его заинтересует и он сам попытается найти соответствующую закономерность.

175. Квадраты и кубы.Можете ли вы найти два числа, разность квадратов которых представляет собой куб, а разность кубов — квадрат? Каковы два наименьших числа, обладающих этим свойством?

176. Интересный куб.Чему равна (в метрах) длина ребра куба, у которого:

1) полная поверхность и объем выражаются одним и тем же числом;

2) полная поверхность равна квадрату объема;

3) квадрат полной поверхности равен объему?

177. «Общий делитель».Вот одна головоломка, которую часто задают мне читатели (разумеется, конкретные числа в ней приводятся разные). Корреспондент одной провинциальной газеты сообщил, что многие учителя подорвали свое здоровье в тщетных попытках ее решить! Наверное, он немного преувеличил, потому что вопрос на самом деле простой, правда, если догадаться, с какой стороны к нему подойти.

1 ... 8 9 10 11 12 13 14 15 16 ... 70 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название