Механика от античности до наших дней

На нашем литературном портале можно бесплатно читать книгу Механика от античности до наших дней, Григорьян Ашот Тигранович-- . Жанр: Культурология / Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Механика от античности до наших дней
Название: Механика от античности до наших дней
Дата добавления: 16 январь 2020
Количество просмотров: 323
Читать онлайн

Механика от античности до наших дней читать книгу онлайн

Механика от античности до наших дней - читать бесплатно онлайн , автор Григорьян Ашот Тигранович

Книга состоит из очерков, популярно излагающих историю эволюции теоретической механики от античности до наших дней. Она включает очерки античной механики, механики средневекового Востока и Европы эпохи Возрождения, механики XVII — XX вв. Отдельные главы посвящены достижениям механики в России и СССР. В книге рассматриваются классические понятия массы, силы, импульса, скорости, ускорения и т. д.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 67 68 69 70 71 72 73 74 75 ... 110 ВПЕРЕД
Перейти на страницу:

В начале своей работы Ковалевская ставит вопрос: не существует ли кроме случаев, рассмотренных Эйлером и Лагранжем, еще других случаев движения твердого тела вокруг неподвижной оси, которые могли бы быть выражены при помощи каких-либо функций времени, аналогичных функциям, примененным для исследования первых двух задач? В результате своих изысканий она находит, что применение подобных функций позволит разрешить только один новый случай движения твердого тела. В этом случае центр тяжести тела лежит в плоскости экватора эллипсоида инерции, построенного для неподвижной точки.

В работе Ковалевской о вращении тяжелого твердого тела вокруг неподвижной точки необходимо отметить следующие существенно новые для механики и математики особенности. Ею открыт новый случай вращения твердого тела вокруг неподвижной оси, для которого она нашла общий интеграл. Этот случай справедливо получил ее имя. В своем труде С.В. Ковалевская впервые привлекла к исследованию подобных задач прекрасно разработанный аппарат теории функций комплексного переменного. Наконец, ее работа поставила некоторые новые общие математические проблемы. Н.Е. Жуковский построил наглядные модели волчков для всех трех решенных в конечном виде случаев вращения твердого тела: первый из приведенных рисунков характеризует случай Эйлера — Пуансо, второй — случай Лагранжа — Пуассона, и третий — случай Ковалевской (см. рисунок).

Механика от античности до наших дней - i_039.png

Работы С.В. Ковалевской, посвященные движению твердого тела, стали исходным пунктом многочисленных исследований. Мы можем назвать русских ученых, так или иначе дополнивших анализ Ковалевской: московских профессоров Г.Г. Аппельрота (1866—1943), П.А. Некрасова, Б.К. Млодзеевского (1859—1923), Н.Е. Жуковского, а также А.М. Ляпунова и Н.Б. Делоне.

ПРОБЛЕМА УСТОЙЧИВОСТИ ДВИЖЕНИЯ

Одним из крупнейших достижений механики в конце XIX в. явилось создание теории устойчивости движения систем с конечным числом степеней свободы. Основоположником этой теории был А.М. Ляпунов, которому наука обязана и многими другими важными исследованиями, особенно по фигурам равновесия вращающейся жидкости. Мы остановимся преимущественно на разработке Ляпуновым проблемы устойчивости движения.

Александр Михайлович Ляпунов родился 6 июня 1857 г. в Ярославле. Первоначальное математическое образование он получил под руководством отца, М.В. Ляпунова, известного астронома, работавшего ряд лет в Казани, а с 1855 по 1863 г. бывшего директором Демидовского лицея в Ярославле. В 1870 г. семья Ляпуновых переехала в Нижний Новгород. В 1876 г. А.М. Ляпунов окончил здесь гимназию и поступил в Петербургский университет на отделение естественных наук физико-математического факультета; вскоре он перешел на математическое отделение. Особенно большое влияние оказали на Ляпунова курсы лекций П.Л. Чебышева, а также Д.К. Бобылева.

Под руководством Бобылева А.М. Ляпунов начал свои первые научные исследования. В 1880 г. Ляпунову была предложена для сочинения тема по гидростатике «О равновесии тяжелых тел в тяжелых жидкостях». За это сочинение он получил золотую медаль. По окончании университета в 1880 г. Ляпунов был оставлен при кафедре механики Петербургского университета для подготовки к профессорскому званию. Одновременно он был назначен на должность хранителя механического кабинета.

В 1882 г. Ляпунов сдал магистерские экзамены и обратился за советом к Чебышеву относительно выбора темы для магистерской диссертации. Чебышев предложил ему задачу, определившую выбор темы магистерской диссертации Ляпунова «Об устойчивости эллипсоидальных форм равновесия вращающейся жидкости», которую он защитил в 1885 г. в Петербургском университете. К задаче Чебышева и магистерской диссертации Ляпунова мы возвратимся позже.

В 1885 г. Ляпунов был приглашен приват-доцентом в Харьковский университет и приступил здесь к чтению лекций по механике.

В Харькове Ляпунов занимался проблемой устойчивости движения, математической физикой, особенно теорией потенциала, а также гидродинамикой. К работам по математической физике и механике жидкостей он привлек своего ученика В.А. Стеклова. Кратким, но важным эпизодом в научной деятельности Ляпунова явились его занятия теорией вероятностей: вслед за Чебышевым и А.А. Марковым (1856—1922) он далеко и оригинально продвинул исследование предельной теоремы Лапласа. Активно участвовал Ляпунов в работе Харьковского математического общества: в 1891—1898 гг. — в должности товарища председателя и в 1899—1902 гг. — в должности председателя и редактора научного органа.

Механика от античности до наших дней - i_040.jpg
АЛЕКСАНДР МИХАЙЛОВИЧ ЛЯПУНОВ (1857-1918)

Русский математик и механик. Основоположник современной теории устойчивости движения. А.М. Ляпунову принадлежат важнейшие исследования по теории фигур равновесия вращающейся жидкости и устойчивости этих фигур 

Свою первую работу по устойчивости движения Ляпунов напечатал в 1888 г. в «Сообщениях Харьковского математического общества». Это была статья «О постоянных винтовых движениях твердого тела в жидкости». Вопрос об устойчивости постоянных винтовых движений, как писал в этой статье Ляпунов, представляет хороший пример для общей теории устойчивости движения. В 1889 г. Ляпунов напечатал вторую статью на эту тему — «Об устойчивости движения в одном частном случае задачи о трех телах».

Разработка вопросов общей теории устойчивости, проводившаяся Ляпуновым в эти годы, завершилась опубликованием в 1892 г. в Харькове замечательного труда «Общая задача об устойчивости движения», который он защитил в качестве диссертации на степень доктора прикладной математики в 1893 г. Защита состоялась в Московском университете, причем оппонентами были Н.Е. Жуковский и Б.К. Млодзеевский. После защиты Ляпунову было присвоено звание ординарного профессора. В течение ряда лет Ляпунов продолжал исследования в том же направлении, существенно дополнив результаты докторской диссертации.

В 1900 г. Ляпунов был избран членом-корреспондентом Академии наук, а в конце 1901 г. — академиком по кафедре прикладной математики, которая оставалась незанятой с 1894 г., после смерти Чебышева. В 1902 г. Ляпунов переехал в Петербург. Здесь он уже не преподавал, а целиком отдался научной работе. Он возобновил занятия фигурами равновесия жидкости и их приложениями к теории фигур небесных тел. В этой области ему принадлежат исключительно глубокие открытия.

Летом 1917 г. в связи с болезнью жены Ляпунов переехал в Одессу. В сентябре следующего года он начал в Одесском университете чтение курса «О форме небесных тел». Этот курс ему закончить не удалось: 3 ноября 1918 г. он скончался.

Научные заслуги Ляпунова были широко оценены на родине и за рубежом. Он был избран почетным членом многих русских университетов, членом-корреспондентом Парижской академии наук, иностранным членом Римской академии наук и т. д.

Обратимся к проблеме устойчивости движения, имеющей важное значение для теоретической механики, астрономии, аэромеханики, прикладной механики, теории механизмов и других областей техники.

В механических задачах, как правило, для упрощения анализа приходится пренебрегать влиянием некоторых факторов, пренебрегать силами, действие которых мало по сравнению с основными силами, определяющими движение. Однако в ряде случаев эти хотя бы и незначительные силы, действуя достаточно долго или возобновляясь периодически, могут частично и даже полностью изменить характер первоначального движения. Таким образом, это движение окажется неустойчивым.

Если точное решение задачи получено в конечном виде, можно судить об устойчивости или неустойчивости движения. Но не всегда такое решение можно найти. Отсюда вытекает необходимость найти метод, позволяющий, не решая полностью уравнений движения, определять, будет ли данное движение устойчивым или нет. Проблема устойчивости была поставлена в XVIII в. в связи с исследованием проблемы устойчивости Солнечной системы. Если пренебречь взаимными притяжениями планет и считать, что планеты притягиваются только Солнцем, то аналитическая механика дает однозначное решение, полностью определяющее основную траекторию движения планеты. Однако в действительности на каждую планету кроме силы притяжения Солнца действуют также силы притяжения других планет, которые возмущают движение рассматриваемой планеты по найденной основной орбите. Влияние этих возмущений может накапливаться и с течением времени полностью разрушить основное движение. Исследуя этот вопрос, Лаплас и Лагранж пришли к выводу, что для Солнечной системы возмущения больших полуосей и эксцентриситетов орбит не возрастают монотонно с течением времени, но периодически колеблются, достигая максимального и минимального значений; следовательно, движение больших планет Солнечной системы устойчиво. Но эта устойчивость не всегда имеет место (например, движение частиц в кольцах Сатурна). Как известно, кольца Сатурна состоят из частиц, вращающихся вокруг планеты. В этих кольцах на некоторых расстояниях от центра планеты имеются щели, разделяющие их на ряд концентрических колец и представляющие собой области, где движение находившихся там некогда частиц было неустойчиво.

1 ... 67 68 69 70 71 72 73 74 75 ... 110 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название