Вечное движение (О жизни и о себе)
Вечное движение (О жизни и о себе) читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Меня представили председателю президиума Казахского филиала Академии наук Канышу Имантаевичу Сатпаеву, крупному ученому-геологу. Он одобрил желание биологов филиала прослушать цикл моих лекций, и я прочитал их в первые месяцы 1942 года. Цикл этих лекций содержал три большие темы: "Хромосомная теория, теория гена и мутаций"; "Связь генетики с практикой сельского хозяйства"; "Методологические проблемы генетики". Аудитория на этих лекциях была всегда переполненной, приходилось отвечать на множество вопросов, которыми заканчивалось каждое выступление. Среди слушателей были работники филиала Академии наук СССР, Казахского филиала ВАСХНИЛ и вузов Алма-Аты.
Товарищи из филиала Академии наук помогли мне материалами и приборами, чтобы можно было начать работы по генетике популяций дрозофилы. По совместному ходатайству уполномоченного Академии наук СССР и Казахского филиала Академии наук городской совет Алма-Аты предоставил на окраине города земельный участок для генетических экспериментов с растениями.
Страна заботилась о своих ученых и деятелях культуры. Надо сказать, что они не испытали тех тяжелых лишений, которые выпали на долю миллионов граждан России и других республик в эти грозные годы. Но и ученым приходилось так же, как и всем, сажать на огородах картошку. Е. Н. и М. С. Навашины, известные астрономы Н. Н. Парийский и Б. А. Вельяминов-Воронцов, известный географ Г. А. Авсюк получили огородный участок в горной долине.
Шла весна 1942 года. Академия наук СССР мобилизовала все силы ученых на помощь фронту. Это касалось в первую очередь физиков, химиков, математиков, металлургов. Биологи, работавшие по теоретическим разделам науки, оказались в трудном положении. Конечно, надо было исследовать фундаментальные проблемы науки, чтобы, когда окончится война, иметь большие заделы для успешного продвижения вперед после победы. Вместе с тем неотвязно мучило желание всемерно помогать стране восстанавливать разрушенное гитлеровскими армиями хозяйство.
Условия эвакуации были трудными для проведения крупных работ практического направления. Задача состояла в том, чтобы путем использования новых экспериментальных подходов решить важную производственную задачу. Генетика имеет много подходов, чтобы целесообразно изменять качества растений, животных и микроорганизмов. Не раз было доказано, что успехи фундаментальных научных областей, полученные в генетических лабораториях, приводили к кардинальным изменениям в практике. Такое положение было, например, в истории гибридной кукурузы. Ученые в экспериментах изучали влияние родственного размножения. Кукуруза является перекрестноопыляемым растением, но, изолируя соцветия кукурузы, можно заставить ее самоопыляться. Оказалось, что самоопыление ведет к ухудшению качеств растений, вместе с тем оно выравнивает наследственные свойства линии, в которой проводится длительное самоопыление.
Таким образом, получались так называемые гомозиготные, то есть наследственно однородные внутри себя, или чистые, линии. Казалось, что эти исследования имеют только теоретическое значение. Но когда была проведена гибридизация чистых линий, свойства некоторых гибридов поразили ученых. Урожайность у таких исключительных гибридов была очень высокой. Так были заложены основы для разработки методов использования самоопыленных линий в практике получения высокоурожайных и ценных по своим биохимическим и другим качествам гибридных сортов кукурузы.
В настоящее время получение гетерозисных гибридов имеет крупнейшее производственное значение. Оно касается как растений, так и животных. Весь мир завоевало бройлерное птицеводство, основанное на производственном использовании гибридных цыплят. Суть метода состоит в создании гомозиготных линий с помощью родственного размножения и подбора в качестве родителей той пары линий, которые при скрещивании дают гетерозисных, высокоурожайных гибридов. Хотя в поисках таких линий все еще много эмпиризма, однако сам метод в целом отработан очень хорошо, и по своим практическим результатам поиски удачной гибридной комбинации оправдываются сторицей.
Использование гетерозиса у культурных растений - одно из важнейших производственных направлений в области генетики и селекции. Но процесс создания линий и их испытания при гибридизации - долгий процесс. Работа по созданию гибридной кукурузы, например, продолжалась около 30 лет и потребовала большого труда и затрат.
В условиях 1942 года в Алма-Ате надо было искать другие эффективные пути. Казалось, что таким путем может служить экспериментальное получение полиплоидов, поскольку и здесь при получении товарных семян может быть использована гибридизация. В этом случае полиплоидия сочетается с гетерозисом.
Явление полиплоидии состоит в том, что у полиплоидов число хромосом в клетках оказывается кратно увеличено в сравнении с исходным. Например, дикие пшеницы имеют в ядрах своих клеток по 14 хромосом, культурные виды твердых пшениц содержат по 28 хромосом (тетраплоиды, тетра четыре), мягкие пшеницы - по 42 хромосомы (гексаплоиды, гекса шесть).
Создавалось впечатление, что факт кратного увеличения числа хромосом в клетках внешне очень прост. Но чтобы это осуществилось, должны быть включены в действие очень сложные законы размножения клетки и законы взаимодействия ядра и цитоплазмы. При удвоении числа хромосом такие полиплоиды получили название тетраплоидов. Причина этого наименования лежит в том, что они, имея удвоенное общее число хромосом, содержат четыре основных исходных набора хромосом. Это вызвано тем, что любой исходный, обычный набор хромосом является двойственным (диплоидным).
Двойственность набора хромосом обусловлена происхождением: половина его в виде одного простого (гаплоидного) набора приходит от матери, а другая, такая же половина приходит от отца. Во время образования половых клеток имеет место работа очень сложного редукционного деления, который превращает диплоидный набор в гаплоидный. Это достигается тем, что хромосомы в каждой паре разделяются, и в половые клетки попадает простой гаплоидный набор. У диких пшениц в пыльцу и в яйцеклетки из каждой из семи пар хромосом попадает по одному гомологу. В результате каждая половая клетка имеет семь индивидуальных хромосом, то есть она содержит гаплоидный набор хромосом. После слияния яйцеклетки и спермия образуется зигота, то есть та исходная клетка, из которой развивается весь организм. Очевидно, что при образовании зиготы в процессе оплодотворения встречаются клетки, каждая из которых несет гаплоидный набор хромосом. В результате организм имеет удвоенное (парное) число хромосом, которое получило название диплоидного набора. В нашем примере у диких пшениц оно будет равно 14 хромосомам.
Но в природе все подвержено изменениям. Бывают и такие случаи, что при созревании половых клеток нарушаются процессы редукционного деления ядра и весь диплоидный набор хромосом попадает в одну клетку. Потомство, развивающееся из такой клетки, испытавшей на себе процесс нерасхождения хромосом, приобретает измененное число хромосом. Очевидно, что слияние диплоидного (результат нерасхождения) и гаплоидного (результат нормального редукционного деления) наборов поведет к тому, что в такой зиготе каждая хромосома будет представлена уже в тройном числе, и растение, которое развивается из такой зиготы, получает название триплоида. В том же случае, если встретятся две половые клетки с диплоидными наборами, то возникнет растение с учетверенным набором хромосом, то есть тетраплоид.
Может показаться, что наблюдения за числом хромосом имеют сугубо теоретический характер и представляют интерес только для узкого специалиста. На самом же деле это далеко не так. Изучение внутриклеточных явлений пролило свет на важнейшие явления формообразования у растений.
Обширные исследования генетиков и цитологов показали, что человек хотя и бессознательно, то есть не понимая механизма деления клетки, тем не менее широко использовал явление нерасхождения хромосом при создании различных культурных растений. Полиплоидами являются пшеницы, картофель, хлопчатник, многие плодовые культуры и т. д. Стало очевидным, что явление кратного увеличения числа хромосом в клетках растений (полиплоидия) служит могучим орудием изменения природы растений. Оно сыграло важнейшую роль в явлениях естественной эволюции в природе, ибо появление новых видов растений во многих случаях было связано с полиплоидией. Это коснулось и создания человеком культурных растений.