-->

Книги, пронизывающие века

На нашем литературном портале можно бесплатно читать книгу Книги, пронизывающие века, Глухов Алексей Гаврилович-- . Жанр: История. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Книги, пронизывающие века
Название: Книги, пронизывающие века
Дата добавления: 16 январь 2020
Количество просмотров: 219
Читать онлайн

Книги, пронизывающие века читать книгу онлайн

Книги, пронизывающие века - читать бесплатно онлайн , автор Глухов Алексей Гаврилович

Книга популярных очерков рассказывает о том, как создавались научные труды величайших гениев человечества, оказавшие огромное влияние на развитие науки, техники и культуры. Автор увлекательно рассказывает судьбу великих творений ученых разных эпох и стран. Среди этих книг - 'Начала' Эвклида и 'Канон' Ибн Сины, трактат Коперника и книга Марко Поло, 'Диалог' Галилея и 'Воображаемая геометрия' Лобачевского, 'Происхождение видов' Дарвина и 'Рефлексы головного мозга' Сеченова. Очерки написаны живо и занимательно. Представляют большой интерес для широкого круга читателей, особенно для молодежи.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 18 19 20 21 22 23 24 25 26 ... 38 ВПЕРЕД
Перейти на страницу:

...Огюст Шевалье выполнил последнюю волю своего друга - уже в 1832 г. в "Энциклопедическом обозрении" он опубликовал письмо, написанное Эваристом накануне дуэли. Правда, никакого отклика в научном мире эта публикация не нашла. Младший брат Галуа Альфред поклялся умирающему, что приложит все силы, чтобы опубликовать его рукописи. Сохранились тщательно переписанные Огюстом работы Галуа и копия письма Альфреда к Якоби.

От Шевалье рукописи попадают к знаменитому математику Ж. Лиувиллю, который попытался разобраться в наследии Галуа. Самую важную его работу он опубликовал (в 1846 г.) в "Журнале чистой и прикладной математики". Публикация сопровождена пространным предисловием. Отмечая достоинства открытий Галуа, Лиувилль вместе с тем пытался защитить и оправдать тех, кто в свое время не смог и не пожелал понять Галуа. В предисловии, в частности, говорилось:

"Главным объектом исследований Эвариста Галуа являются условия разрешимости уравнений в радикалах. Автор строит основы общей теории, которую детально применяет к любому уравнению, чья степень - простое число. Шест надцати лет, на скамье Луи ле Гран, работал Галуа над этой сложной темой. Он последовательно представил в Академик ряд работ, содержащих результаты его размышлений

Референтам показались неясными формулировки молодого математика, и следует признать, что упрек был не лишен основании. Преувеличенное стремление к краткости породило этот недостаток, которого нужно в первую очередь избегать, когда имеешь дело с отвлеченными и таинственными категориями чистой алгебры. Тому, кто намерен вести читателя к неизведанной земле, далеко от проторенной дороги, воистину необходима ясность. Как сказал Декарт: "Когда имеешь дело с трансцендентальными вопросами, будь трансцендентально ясен" Слишком часто пренебрегал Галуа этой заповедью, и понятно почему знаменитые математики могли счесть необходимым направить одаренного, но неопытного новичка на правильный путь суровым советом. Автор, которого они осудили, был полон энергии и рвения: их совет мог оказаться ему полезен

Теперь все иначе. Галуа больше нет! Остережемся бессмысленной критики; пройдем мимо недочетов и обратимся к достоинствам..." Как видим, Лиувилль не только оправдывает людей сыгравших роковую роль в судьбе ученого, но и сам говорит о "недочетах"...

В этом же предисловии Лиувилль объявил о том, что намерен снабдить работу Галуа комментариями, но он никогда их не написал. Лиувилль утверждал, что понять доказательство очень легко, правда, при этом он добавлял: "Достаточно на месяц-другой посвятить себя исключительно этой работе не думая ни о чем другом".'

Это затруднение, в котором в свое время признался Пуассон, хорошо объяснил автор очерка о Галуа математик Бертран: "Прежде чем написать работу, Галуа больше года производил смотр бесчисленной армии сочетаний, подстановок Ему пришлось отобрать и пустить в ход все дивизии, бригады полки и батальоны и выделить простые подразделения Чтобы понять его изложение, читателю нужно познакомиться с этим сборищем, проложить сквозь него дорогу, научиться видеть его в нужном свете. На все это нужны долгие часы и активное внимание. Этого требует сущность темы. И мысли и язык являются новыми. Их не изучить за один день".

Лиувилль не только не написал комментарии, но помешал это сделать другим. Он прочитал для нескольких друзей ряд лекции о теории Галуа. На этих лекциях присутствовал математик Серре. Несколько лет спустя он выпустил "Учебник высшей математики" - об открытиях Галуа в нем не было ни слова. Серре не хотел незаконно воспользоваться правами своего учителя - Лиувилля. Через пятнадцать лет готовилось к выпуску в свет второе издание "Учебника"; в нем 61 страница отводилась теории Галуа. Бертран корректировал оттиски. Но, уступая желанию Лиувилля, Серре из этого издания изъял уже напечатанные страницы. Чтобы уладить дело с наборщиком, он написал столько же страниц на совершенно другую тему.

Почти через сорок лет после смерти Эвариста Галуа, в 1870 г. К. Жордан создал обширный труд (667 стр.) о теории подстановок. Это - по мнению самого автора - лишь комментарий к работе Галуа. Именно труд К. Жордана привлек внимание математического мира к идеям Галуа и принес ему посмертную славу. Во введении хорошо было сказано о значении метода Галуа: "Галуа было суждено дать четкое обоснование теории разрешимости уравнений... Проблема разрешимости, прежде казавшаяся единственным объектом теории уравнений, ныне представляется первым звеном в длинной цепи вопросов, касающихся преобразования и классификации иррациональных чисел. Применяя свои общие методы к этой частной проблеме, Галуа без труда нашел характерное свойство групп уравнений, разрешимых в радикалах".

С появлением книги К. Жордана наступило "второе рождение" теории Галуа. Когда Жордан работал над своим трактатом, к нему приехали два молодых математика - норвежец Софус Ли и немец Ф. Клейн. Они увлеклись идеями Эвариста Галуа и очень многое сделали для дальнейшей разработки его теории. Софус Ли обратился (следуя по пути Галуа) к дифференциальным уравнениям. Ф. Клейн вскрыл фундаментальную роль идей Галуа для геометрии. Работы этих ученых оказались плодотворными для самых различных разделов математики и математической физики.

В 1906-1907 гг. Ж. Таннери опубликовал большую часть из оставшихся посмертных рукописей Галуа - "дань его славе, сияющей все ярче и ярче со времени публикации Лиувилля".

О трудах французского математика знали и в нашей стране. Первая книга в русской литературе, излагающая теорию Галуа, вышла в свет в 1890 г. Это - "Высшая алгебра" М. Е. Ващенко-Захарченко...

Продолжались разработки основных положений Галуа и в алгебре, появилась специальная научная дисциплина "теория Галуа", изучаемая в высших учебных заведениях. Член-корреспондент АН СССР Н. Чеботарев в предисловии к I тому "Основ теории Галуа (1934 г.) писал: "Теория Галуа вышла из рамок, которые были намечены ее творцом. Вопрос о решении уравнений в радикалах перестал быть центральным в алгебре, но теория Галуа продолжает играть в ней главную роль. Я не говорю уже о том, что идеи Галуа глубоко проникли и в другие отделы математики и частью создали, частью продвинули такие математические дисциплины, как дифференциальные уравнения, автоморфные функции, комбинаторную топологию и т. п.".

И сегодня теория Галуа не является полностью завершенной, многие ее задачи ждут своего решения.

Рукописи Эвариста Галуа сейчас хранятся во французской Академии наук, в той самой Академии, которая в свое время столь высокомерно обошлась с одним из величайших математиков мира.

Что читать

Галуа Э. Сочинения. Пер. с франц. М.- Л., 1936.

Александров П. Введение в теорию групп. М., 1951.

Дальма А. Эварист Галуа, революционер и математик. Пер. с франц. М., 1960.

Инфельд Л. Эварист Галуа. Пер. с англ. М., 1963.

Чеботарев Н. Основы теории Галуа. М.-Л., 1934, ч. I.

"Воображаемая геометрия" Н. И. Лобачевского

Издавна математика признавалась самой совершенной, самой точной из всех наук. А геометрия считалась венцом математики как по незыблемости ее истин, так и по безукоризненности ее суждений.

И вот русский ученый, профессор Казанского университета Николай Иванович Лобачевский создает новую геометрическую систему, которую он сам назвал "воображаемой". В архивах университета сохранился документ - сопроводительная записка Лобачевского к докладу, который он представил в физико-математическое отделение. Записка начиналась словами: "Препровождаю сочинение мое под названием "Сжатое изложение начал геометрии о параллельных линиях". Желаю знать мнение о сем ученых, моих сотоварищей". На документе дата - "7-го февраля 1826 г.", внизу - "Слушано 1826 г. 11 февраля".

1 ... 18 19 20 21 22 23 24 25 26 ... 38 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название