-->

Психология критического мышления

На нашем литературном портале можно бесплатно читать книгу Психология критического мышления, Халперн Дайана-- . Жанр: История. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Психология критического мышления
Название: Психология критического мышления
Дата добавления: 16 январь 2020
Количество просмотров: 289
Читать онлайн

Психология критического мышления читать книгу онлайн

Психология критического мышления - читать бесплатно онлайн , автор Халперн Дайана

Эта книга написана в помощь тем, кто хочет научиться думать современно. Опираясь на новейшие достижения когнитивной психологии и свой уникальный педагогический опыт, Дайана Халперн разработала эффективную программу обучения навыкам «критического мышления». Данная книга может быть широко использована в преподавательской и методической работе, окажет неоценимую помощь в самообразовании, а кроме того, является своеобразным путеводителем по современной когнитивной психологии. Рекомендуется психологам, педагогам, философам, а также всем интересующимся когнитивной психологией, психологией творчества, теорией принятия решений.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

Стратегия решения с конца очень удобна, если от конечной цели ведет меньше путей, чем из исходного положения. Разумеется, эта стратегия может быть применена не только для прохождения лабиринтов. Рассмотрим такую задачу: «Площадь, которую покрывают водяные лилии на одном из озер, удваивается каждые двадцать четыре часа. С того момента, как появилась первая лилия, до того, когда лилии полностью покрыли поверхность озера, прошло шестьдесят дней. Когда озеро было покрыто наполовину?» (Fixx, 1978, р. 50).

Единственным путем решения этой задачи является применение стратегии решения с конца. Можете ли вы решить ее, пользуясь этой подсказкой? Если озеро полностью было покрыто лилиями на 60-й день, а площадь, которую покрывают лилии, удваивалась каждые сутки, какая часть озера была закрыта в 59-й день? Ответ: половина. Таким образом, пользуясь обратным ходом, мы легко решили эту задачу. Прямая стратегия решения этой задачи наверняка завела бы нас в тупик.

Иногда оказывается эффективной комбинация прямой стратегии и стратегии решения с конца. Если вы столкнулись с геометрической или тригонометрической задачей на доказательство, то, вполне вероятно, прибегнув к комбинации этих двух стратегий, вы успешно с ней справитесь. Вы можете начать с конечного выражения, преобразуя его до какой-то определенной стадии, затем последовательно переходить от преобразования этого выражения к преобразованию исходного выражения и наоборот – до тех пор, пока они не совпадут на каком-то промежуточном этапе.

Психология критического мышления - pic_165.jpg

Рис. 9.13. Стратегия решения с конца удобна, когда из конечной точки ведет меньше путей, чем из исходного положения.

Упрощение

Вы все обдумываете и обдумываете свою задачу; попробуйте упростить ее…Довели ли вы ее до максимально возможного упрощения, до той ясности, которая наталкивает на мысли?

Полья (Ро1уа, 1962)

Задачи, вызывающие затруднения при решении чаще всего сложны по структуре. Хороший способ справиться с такой задачей – это упростить ее настолько, насколько возможно. Нередко удачно выбранная форма наглядного представления задачи сама способствует ее упрощению, поскольку позволяет «увидеть» эффективный путь решения.

Предположим, вы столкнулись с классической задачей «кошка на дереве». Согласно устоявшемуся мнению, кошки могут карабкаться вверх по деревьям, но не могут спускаться. (На самом деле в этом утверждении не больше правды, чем в том, что слоны боятся мышей.) Предположим, вам надо снять кошку с ветки, расположенной на высоте 10 футов. В вашем распоряжении имеется единственная лестница длиной 6 футов. Для того чтобы лестница была надежно установлена, ее основание должно находиться на расстоянии трех футов от ствола. Дотянетесь ли вы до кошки?

Лучший путь к решению этой (и не только этой) задачи – графически изобразить исходные данные. Условия задачи графически показаны на рис. 9.14. Как только информация представлена в виде чертежа, ее можно воспринимать как простую геометрическую задачу: найти гипотенузу прямоугольного треугольника, если его катеты равны 10 и 3 футам. Такая формулировка задачи предполагает, что вы воспользуетесь своими знаниями о том, как вычисляются длины сторон треугольников. Факт остается фактом: когда для решения задачи требуется определенный уровень образования – его ничем не заменишь.

Психология критического мышления - pic_166.jpg

Рис. 9.14. Задача «кошка на дереве».

Если исходные данные представить в виде рисунка, задача превращается в простую геометрическую задачу.

Формула для нахождения гипотенузы треугольника имеет вид:

а2 + Ь2 = с2.

Подставляя соответствующие значения в это уравнение, получим:

 102 + 32 = с2
100 + 9 = с2

                                                                                                         109 = с2

                                                                                                          V-109 = c

                                                                                                          с= 10,4

Таким образом, для того чтобы достать до ветки, нужна лестница длиной 10,4 фута. Но постойте, может, попробовать перерисовать задачу, используя условие, что для спасения кошки в вашем распоряжении имеется только шестифутовая лестница? На рис. 9.15 приведена несколько другая графическая интерпретация этой задачи.

Может быть использована та же формула, но теперь неизвестной величиной является не гипотенуза, а один из катетов прямоугольного треугольника.

– 

Психология критического мышления - pic_167.jpg

Рис. 9.15. Задачу «кошка на дереве» можно переформулировать таким образом: как высоко от земли располагается конец лестницы в 6 футов, если ее основание отставить на 3 фута от ствола?

Тогда и ответ получится другой.

Изменяя формулу, получим:

а2 + Ь2 = с2

а2 = с22

а2 = 62-32

а2 = 36-9

а2 = 27

a=V-27

a =5,2

Таким образом, верхняя планка лестницы коснется ствола дерева на высоте 5,2 фута над землей. Сможете ли вы достать кошку? Нарисуйте себя на верхней ступеньке. Если вы выше 5 футов, то без труда дотянетесь до кошки, стоя на последней или даже предпоследней ступеньке. На самом деле вам даже не придется тянуться.

Упрощение является хорошей стратегией для решения абстрактных задач, сложных или содержащих информацию, не относящуюся к поиску решения. Часто стратегия упрощения работает рука об руку с выбором оптимальной формы представления задачи, поскольку именно удачное наглядное представление может существенно упростить задачу.

Обобщение и специализация

Иногда, столкнувшись с задачей, оказывается полезно рассмотреть ее как частный случай целого класса аналогичных задач (обобщение); или, наоборот, как специальный случай (специализация).

Чаще всего стратегии обобщения и специализации уместны при представлении задачи в форме древовидной диаграммы. Большинство целей в этом случае может одновременно классифицироваться как подчиненные для вышестоящей категории и главные для нижестоящей. Рассмотрим пример, проясняющий сказанное. Предположим, что перед вами как дизайнером мебели стоит задача разработки проекта специального удобного стула для чтения. Что бы вы предприняли для решения этой задачи?

Как вы уже, по-видимому, поняли – это пример нечетко поставленной задачи. Самая большая сложность состоит в том, чтобы выбрать: какой из нескольких возможных вариантов стульев наиболее подходит поставленной цели? Воспользуйтесь древовидной диаграммой, чтобы классифицировать стулья вообще и стулья для чтения в частности. Таких диаграмм можно построить множество; один из возможных вариантов приведен на рис. 9.16.

Перейти на страницу:
Комментариев (0)
название