-->

Введение в электронику

На нашем литературном портале можно бесплатно читать книгу Введение в электронику, Гейтс Эрл Д.-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Введение в электронику
Название: Введение в электронику
Дата добавления: 16 январь 2020
Количество просмотров: 10 608
Читать онлайн

Введение в электронику читать книгу онлайн

Введение в электронику - читать бесплатно онлайн , автор Гейтс Эрл Д.

Книга известного американского специалиста в простой и доступной форме знакомит с основами современной электроники. Основная ее цель — теоретически подготовить будущих специалистов — электриков и электронщиков — к практической работе, поэтому кроме детального изложения принципов работы измерительных и полупроводниковых приборов, интегральных микросхем рассмотрены общие вопросы физики диэлектриков и полупроводников. Обсуждение общих принципов микроэлектроники, описание алгоритмов цифровой обработки информации сопровождается примерами практической реализации устройств цифровой обработки сигналов, описаны принципы действия и устройство компьютера. Книга снабжена большим количеством примеров, задач и упражнений, выполнение которых помогает пониманию и усвоению материала. Предназначена для учащихся старших курсов средних специальных учебных заведений радиотехнического профиля, а также будет полезна самостоятельно изучающим основы электроники.

 

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 85 86 87 88 89 90 91 92 93 ... 120 ВПЕРЕД
Перейти на страницу:
Введение в электронику - _133.jpg

Рис. 29–13. Генератор на основе моста Вина на интегральной микросхеме.

29-2. Вопросы

1. Каковы три типа генераторов синусоидальных колебаний?

2. Нарисуйте схемы трех типов LC генератора.

3. Чем отличается генератор Колпитца от генератора Хартли?

4. Как можно улучшить стабильность LC генератора?

5. Каковы два типа RC генераторов, используемых для получения синусоидальных колебаний?

29-3. ГЕНЕРАТОРЫ НЕСИНУСОИДАЛЬНЫХ КОЛЕБАНИЙ

Генераторы несинусоидальных колебаний генерируют несинусоидальные колебания. Это не какая-то особая форма колебаний. Несинусоидальные колебания могут иметь прямоугольную, пилообразную или треугольную форму или комбинацию этих форм. Общей характеристикой для всех генераторов несинусоидальных колебаний является то, что все они — релаксационные генераторы. Релаксационный генератор запасает энергию в реактивной компоненте в течение одной фазы цикла колебаний и постепенно отдает ее в течение релаксационной фазы цикла.

Релаксационными генераторами являются блокинг-генераторы и мультивибраторы. На рис. 29–14 изображена схема блокинг-генератора.

Введение в электронику - _134.jpg

Рис 29–14. Блокинг-генератор.

Причиной названия является то, что транзистор легко переводится в режим блокирования (запирания). Условие блокирования определяется разрядом конденсатора C1. Конденсатор C1 заряжается через переход эмиттер-база транзистора Q1. Однако когда конденсатор C1 заряжен, у него есть только один путь разряда — через резистор R1. Величина постоянной времени RC цепочки из резистора и конденсатора С1, устанавливает, как долго транзистор будет заперт (блокирован), а также определяет частоту колебаний. Большая постоянная времени соответствует низкой частоте, а маленькая постоянная времени — высокой частоте.

Если выходное напряжение взять с RC цепочки в эмиттерной цепи транзистора, то оно будет иметь пилообразную форму (рис. 29–15).

Введение в электронику - _135.jpg

Рис. 29–15. Напряжение пилообразной формы, генерируемое блокинг-генератором.

RC цепочка определяет частоту колебаний и создает пилообразное напряжение. На транзистор подано напряжение смещения в прямом направлении через резистор R1. Как только транзистор Q1 начинает проводить, конденсатор С1 быстро заряжается. Положительный потенциал на верхней обкладке конденсатора С1 смещает эмиттерный переход в обратном направлении, запирая транзистор Q1. Конденсатор С1 разряжается через резистор R2, образуя задний фронт пилообразного импульса. Когда конденсатор С1 разряжается, транзистор опять смещается в прямом направлении и начинает проводить, повторяя процесс.

Конденсатор С1 и резистор R2 определяют частоту колебаний. Сделав резистор R2 переменным, можно изменять частоту колебаний. Если резистор R2 имеет высокое сопротивление, постоянная времени RC цепочки велика и частота колебаний низка. Если резистор R2 имеет низкое сопротивление, постоянная времени RC цепочки уменьшится и частота колебаний возрастет.

Мультивибратор — это релаксационный генератор, который может находиться в одном из двух временно стабильных состояний, и быстро переключаться из одного состояния в другое.

На рис. 29–16 изображена основная схема автоколебательного мультивибратора.

Введение в электронику - _136.jpg

Рис. 29–16. Автоколебательный мультивибратор.

Основой генератора являются два каскада, связанные между собой таким образом, что на вход каждого каскада подается сигнал с выхода другого каскада. Когда один каскад открыт, другой заперт до тех пор, пока эти условия не поменяются местами. Цепь самовозбуждается благодаря наличию положительной обратной связи.

Частота колебаний определяется параметрами цепи связи.

Астабильный мультивибратор является разновидностью автоколебательных мультивибраторов. Астабильный мультивибратор вырабатывает прямоугольные импульсы. Изменением постоянной времени RC цепочки цепей связи можно получить прямоугольные импульсы любой желаемой ширины. Изменением значений резистора и конденсатора может быть изменена рабочая частота. Стабильность частоты мультивибратора выше, чем у типового блокинг-генератора.

Интегральной микросхемой, которая может быть использована в качестве астабильного мультивибратора является таймер 555 (рис. 29–17). Эта интегральная микросхема может выполнять много функций. Она состоит из двух компараторов, триггера, выходного каскада и разрядного транзистора.

Введение в электронику - _137.jpg

Рис. 29–17.Блок-схема интегральной микросхемы таймера 555.

На рис. 29–18 изображена схема, в которой таймер 555 используется в качестве астабильного мультивибратора. Частота колебаний определяется резисторами RА и RB и конденсатором С1. Эта цепь находит широкое применение в промышленности.

Введение в электронику - _138.jpg

Рис. 29–18. Астабильный мультивибратор на основе таймера 555.

29-3. Вопросы

1. Нарисуйте наиболее часто встречающиеся виды несинусоидальных колебаний.

2. Что такое релаксационный генератор?

3. Приведите два примера релаксационных генераторов.

4. Нарисуйте схему блокинг-генератора.

5. Нарисуйте схему астабильного мультивибратора на основе таймера 555.

РЕЗЮМЕ

• Генератор — это невращающееся устройство, вырабатывающее переменный ток.

• Выходное напряжение генератора может быть синусоидальным, прямоугольным или пилообразным.

• Основное требование к генератору — его выходное напряжение должно иметь постоянную частоту или амплитуду.

• Когда конденсатор и катушка индуктивности соединяются параллельно, образуется колебательный контур.

• Когда к колебательному контуру прикладывается напряжение от внешнего источника, в нем возникают колебания.

• Колебания в колебательном контуре затухают из-за потерь, обусловленных наличием сопротивления.

• Для поддержания колебаний в колебательном контуре требуется положительная обратная связь.

• Генератор состоит из трех основных частей: частотоопределяющего устройства, усилителя и цепи обратной связи.

• Тремя основными типами генераторов синусоидальных колебаний являются LC генераторы, кварцевые генераторы и RC генераторы.

• Тремя основными типами LC генераторов являются генератор Хартли, генератор Колпитца и генератор Клаппа.

• Кварцевые генераторы обеспечивают большую стабильность частоты выходного сигнала, чем LC генераторы.

1 ... 85 86 87 88 89 90 91 92 93 ... 120 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название