Введение в электронику
Введение в электронику читать книгу онлайн
Книга известного американского специалиста в простой и доступной форме знакомит с основами современной электроники. Основная ее цель — теоретически подготовить будущих специалистов — электриков и электронщиков — к практической работе, поэтому кроме детального изложения принципов работы измерительных и полупроводниковых приборов, интегральных микросхем рассмотрены общие вопросы физики диэлектриков и полупроводников. Обсуждение общих принципов микроэлектроники, описание алгоритмов цифровой обработки информации сопровождается примерами практической реализации устройств цифровой обработки сигналов, описаны принципы действия и устройство компьютера. Книга снабжена большим количеством примеров, задач и упражнений, выполнение которых помогает пониманию и усвоению материала. Предназначена для учащихся старших курсов средних специальных учебных заведений радиотехнического профиля, а также будет полезна самостоятельно изучающим основы электроники.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
• Видеоусилители — это широкополосные усилители, используемые для усиления видеосигналов.
• Видеочастоты занимают полосу от нескольких герц до 5 или б мегагерц.
• Усилители радиочастоты работают в диапазоне от 10 до 30 мегагерц.
• Усилители радиочастоты делятся на перестраиваемые и неперестраиваемые.
• Операционные усилители — это усилители с гальванической связью и очень высоким коэффициентом усиления.
• Операционные усилители могут иметь коэффициент усиления от 20000 до 1000000.
• Операционные усилители обычно работают в режиме с обратной связью.
• Существуют два режима работы с обратной связью — инвертирующий и неинвертирующий.
Глава 28. САМОПРОВЕРКА
1. Кратко опишите, как используется транзистор для усиления сигналов.
2. Почему схема усилителя с общим эмиттером применяется наиболее широко?
3. Какие факторы влияют на усиление транзистора, и что может быть сделано для их компенсации?
4. Как поданное напряжение смещения влияет на класс работы усилителя?
5. Какой фактор необходимо учесть при соединении одного усилителя с другим?
6. Как метод связи, используемый для соединения усилителей, влияет на его рабочий диапазон частот?
7. При каких условиях могут использоваться усилители постоянного тока?
8. Как решается проблема температурной стабильности в усилителях постоянного тока с большим коэффициентом усиления?
9. В чем основные отличия между усилителями напряжения звуковой частоты и усилителями мощности звуковой частоты?
10. Каковы практические преимущества использования квазикомплементарного усилителя мощности перед комплементарным двухтактным усилителем?
11. Чем видеоусилитель отличается от усилителя звуковой частоты?
12. Какой фактор ограничивает усиление видеоусилителя на высоких частотах?
13. Для чего предназначен усилитель радиочастоты?
14. Для чего используются усилители промежуточной частоты?
15. Перечислите три каскада операционного усилителя и опишите их функции.
16. Где используются операционные усилители?
Глава 29. Генераторы
ЦЕЛИ:
После изучения этой главы студент должен быть в состоянии:
• Описать генератор и его назначение.
• Перечислить основные требования к генератору.
• Объяснить, как работает колебательный контур и как он связан с генератором.
• Нарисовать блок-схему генератора.
• Знать схемы LC, RC и кварцевого генераторов синусоидальных колебаний.
• Знать схемы генераторов несинусоидальных релаксационных (затухающих) колебаний.
• Нарисовать примеры генераторов синусоидальных и несинусоидальных колебаний.
Генератор — это невращающееся устройство, вырабатывающее переменный ток. Генераторы интенсивно используются в электронике: в радиоприем никах и телевизорах, в системах связи, в компьютерах, в промышленных системах управления и в устройствах точного измерения времени. Без генераторов не существовали бы очень многие электронные устройства.
Генератор — это электрическая цепь, генерирующая периодический сигнал переменного тока. Частота сигнала может изменяться от нескольких герц до многих миллионов герц. Электронный генератор является альтернативой механическому генератору, используемому для получения электроэнергии. Преимуществом электронного генератора является отсутствие движущихся частей и значительно большая ширина диапазона, в котором может генерироваться сигнал. Выходное напряжение генератора может быть синусоидальным, прямоугольным или пилообразным, в зависимости от типа генератора. Основным требованием к генератору является постоянство частоты и амплитуды генерируемого напряжения.
Когда катушку индуктивности и конденсатор соединяют параллельно, они образуют цепь, называемую колебательным контуром. При возбуждении колебательного контура внешним источником постоянного тока, в нем возникают колебания; это означает, что в нем начинает течь переменный ток. Вследствие большого сопротивления цепи, колебания в колебательном контуре могут не возникнуть, так как сопротивление колебательного контура поглощает энергию тока и колебания в цепи затухают.
Для поддерживания колебаний в колебательном контуре рассеянную энергию необходимо восполнить. Это восполнение энергии осуществляется с помощью положительной обратной связи. Положительная обратная связь — это подача в колебательный контур части выходного сигнала для поддержки колебаний. Сигнал обратной связи должен быть в фазе с сигналом в колебательном контуре.
На рис. 29-1 изображена блок-схема генератора.
Рис. 29-1. Блок-схема генератора.
Структурное устройство генератора можно разбить на три части. Частотозадающей цепью генератора обычно является LC колебательный контур. Усилитель увеличивает амплитуду выходного сигнала колебательного контура. Цепь обратной связи подает необходимое количество энергии в колебательный контур для поддержки колебаний. Генератор — это схема с обратной связью, использующая постоянный ток для получения колебаний переменного тока.
29-1. Вопросы
1. Что такое генератор?
2. Как работает колебательный контур?
3. Что надо сделать для поддержания колебаний в колебательном контуре?
4. Нарисуйте блок-схему генератора.
5. Каковы функции основных частей генератора?
Генераторы синусоидальных колебаний — это генераторы, вырабатывающие напряжение синусоидальной формы. Они классифицируются согласно их частотозадающим компонентам. Тремя основными типами генераторов синусоидальных колебаний являются LC генераторы, кварцевые генераторы и RC генераторы.
LC генераторы используют колебательный контур из конденсатора и катушки индуктивности, соединенных либо параллельно, либо последовательно, параметры контура определяют частоту колебаний. Кварцевые генераторы подобны LC генераторам, но обеспечивают более высокую стабильность колебаний. LC генераторы и кварцевые генераторы используются в диапазоне радиочастот. Они не подходят для применения на низких частотах. Для применения на этих частотах используются RC генераторы, имеющие резистивно-емкостную цепь для задания частоты колебаний.
Тремя основными типами LC генераторов являются генератор Хартли, генератор Колпитца и генератор Клаппа.
На рис. 29-2 и 29-3 изображены два основных типа генератора Хартли. Катушка с отводом в колебательном контуре указывает, что эти цепи являются генераторами Хартли. Недостатком генератора Хартли с последовательной обратной связью (рис. 29-2) является то, что через часть колебательного контура течет постоянный ток. В генераторе Хартли с параллельной обратной связью постоянный ток в колебательный контур не поступает, так как в цепь обратной связи включен конденсатор.
Рис. 29-2. Генератор Хартли с последовательной обратной связью.
Рис. 29-3. Генератор Хартли с параллельной обратной связью.