-->

Лекции по схемотехнике

На нашем литературном портале можно бесплатно читать книгу Лекции по схемотехнике, Автор неизвестен-- . Жанр: Физика / Технические науки / Компьютерное железо. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Лекции по схемотехнике
Название: Лекции по схемотехнике
Дата добавления: 15 январь 2020
Количество просмотров: 270
Читать онлайн

Лекции по схемотехнике читать книгу онлайн

Лекции по схемотехнике - читать бесплатно онлайн , автор Автор неизвестен

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 4 5 6 7 8 9 10 11 12 ... 23 ВПЕРЕД
Перейти на страницу:

Высокое быстродействие ЭСЛ обусловлено следующими основными факторами: 

1 Открытые транзисторы не находятся в насыщении, поэтому исключается этап рассасывания неосновных носителей в базах.

2 Управление входными транзисторами осуществляется от эмиттерных повторителей предшествующих элементов, которые, имея малое выходное сопротивление, обеспечивают большой базовый ток и, следовательно, малое время открывания и закрывания входных и опорного транзисторов.

3 Малый логический перепад сокращает до минимума время перезарядки паразитных емкостей элемента.

Все эти факторы в комплексе обеспечивают малое время фронта и среза выходного напряжения элементов ЭСЛ.

Для ЭСЛ характерны следующие средние параметры: Uпит=–5В; U1=–(0,7–0,9)В; U0=–(1,5–2)В; Д.ср=3–7 нс; Pпот=10–20 мВт.

Перспективными считаются серии К500 и К1500, причём серия К1500 относится к числу субнаносекундных и имеет время задержки распространения менее 1 нс. (Таблица 8).

Таблица 8 Параметры основных серий ЛЭ ЭСЛ

Параметры Серии
К500 К1500
Входной ток I0ВХ,мА 0,265 0,35
Входной ток I1ВХ, мА 0,0005 0,0005
Выходное напряжение U0ВЫХ, В -1,85…-1,65 -1,81…-1,62
Выходное напряжение U1ВЫХ, В -0,96…-0,81 -1,025…-0,88
Выходное пороговое напряжение, В: 
U0ВЫХ.пор -1,63 -1,61
U1ВЫХ.пор -0,98 -1,035
Время задержки распространения, нс 2,9 1,5
Допустимое напряжение помехи, В 0,125 0,125
Коэффициент разветвления KРАЗ 15
Напряжение питания, В -5,2; -2,0 -4,5; -2,0
Потребляемая мощность на элемент, мВт 8…25 40

3.4 Транзисторная логика с непосредственными связями (ТЛНС) 

В схеме элемента ТЛНС сопротивление нагрузки включено в цепь соединенных коллекторов двух транзисторов (Рисунок 15,а). Входные сигналы X1 и X2 подаются на базы этих транзисторов. Если X1 и X2 одновременно равны «лог 0», то оба транзистора закрыты и на выходе схемы будет высокий потенциал Y=1. Если хотя бы на один, или на оба входа, подать высокий потенциал «лог 1», то один или оба транзистора открыты и на выходе схемы будет низкий потенциал Y=0. Таким образом, схема выполняет операцию ИЛИ-НЕ.

Лекции по схемотехнике - image163.png

Рисунок 15 ЛЭ НСТЛ а) и входные характеристики транзисторов нагрузки б).

Как видно, схема элемента НСТЛ предельно проста, однако у неё есть существенный недостаток. Когда на выходе элемента установлен потенциал лог. «1», на базы транзисторов нагрузок, как показано на рисунке 15,а пунктиром, подаётся постоянный потенциал U¹. Из-за разброса параметров транзисторов (см. рисунок 15,б), токи баз транзисторов могут существенно различаться. В результате один из транзисторов может войти в глубокое насыщение, а другой — находиться в линейном режиме. При этом уровни «лог.1» будут существенно различаться, что неизменно приведёт к сбоям в работе устройства в целом. Поэтому схема ЛЭ НСТЛ применяется только на транзисторах, управляемых напряжением. 

3.5 Интегральная инжекционная логика

Элементы интегральной инжекционной логики (И²Л) не имеют аналогов в дискретной схемотехнике и могут быть реализованы только в интегральном исполнении (рисунок 16,а). Элемент И²Л состоит из двух транзисторов: горизонтальный p-n-p-транзистор выполняет роль инжектора, а вертикальный многоколлекторный n-p-n-транзистор работает в режиме инвертора. Общая область n-типа служит базой p-n-p-транзистора, а также эмиттером n-p-n-транзистора и подключается к «заземлённой» точке. Коллектор p-n-p-транзистора и база n-p-n-транзистора также являются общей областью. Эквивалентная схема приведена на рисунке 16,б.

Лекции по схемотехнике - image165.png

Рисунок 16 Транзистор с инжекционным питанием: а — структурная схема, б — эквивалентная схема, в — эквивалентная схема с генератором тока.

В цепь эмиттер-база инжектора подаётся напряжение питания UПИТ. Минимальное напряжение источника определяется падением напряжения на эмиттерном переходе: UКЭ.нас=0,7 В. Но для стабилизации тока эмиттера I0 последовательно с источником включается резистор R и берут напряжение источника питания UПИТ=1…1,2 В. При этом p-n-переход эмиттер-база VT1 открыт и имеет место диффузия дырок к коллекторному переходу. По мере движения к коллектору часть дырок рекомбинируют с электронами, но их значительная часть достигает коллекторного перехода и, пройдя через него, попадают в p-базу инвертора (транзистора VT2). Этот процесс диффузии, т.е. инжекции дырок в базу идёт постоянно, независимо от входного воздействия.

Если напряжение на базе VT2 Uвх=U0, что соответствует замкнутому состоянию ключа S, дырки, попадающие в p-базу инвертора, беспрепятственно стекают к отрицательному полюсу источника питания. В цепи коллектора транзистора VT2 ток не протекает и это эквивалентно разомкнутому состоянию коллекторной цепи VT2. Такое состояние выходной цепи соответствует напряжению лог. «1».

При Uвх=U1 (ключ S разомкнут) дырки в p-базе инвертора накапливаются. Потенциал базы начинает повышаться и соответственно понижаются напряжения на переходах VT2 до тех пор, пока эти переходы не откроются. Тогда в коллекторной цепи транзистора VT2 будет протекать ток и разность потенциалов между эмиттером и коллектором инвертора (транзистора VT2) будет близка к нулю, т.е. этот транзистор представляет собой короткозамкнутый участок цепи, и это состояние будет соответствовать уровню лог. «0». Таким образом, рассмотренный элемент выполняет роль ключа.

Как известно, коллекторный ток транзистора, включённого в схему с общей базой, не зависит от изменения напряжения на коллекторе в широких пределах. Транзистор VT1 включён в схему с ОБ. Из теории работы биполярного транзистора известно, что его выходная характеристика, снятая при постоянном токе эмиттера, почти горизонтальна, то есть ток коллектора не зависит от напряжения на коллекторе. Поэтому он может быть заменён эквивалентным генератором тока. В соответствии с теоремой об эквивалентном генераторе тока, прибавление или вычитание от  источника тока постоянного напряжения не влияет на величину тока этого генератора. В соответствии с этим схема транзистора с инжекционным питанием представляется более простой эквивалентной схемой, приведённой на рисунке 16,в.

Если Uвх=U1, то ток I0 от генератора тока втекает в базу VT2, открывая его. При этом Uвх=U0. Если Uвх=U0, то ток I0 замыкается на «землю», транзистор VT2 закрыт и Uвых=U1.

Сила тока инжекции I0 невелика (10 нА…100 мкА), поэтому транзистор работает в активном режиме. Среднее время задержки распространения сигнала определяется лишь длительностью процесса рассасывания избыточных зарядов в базе инвертора и временем перезарядки паразитных емкостей, поэтому ключ является быстродействующим. Быстродействие ключа возрастает в при увеличении тока инжекции.

1 ... 4 5 6 7 8 9 10 11 12 ... 23 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название