-->

Лекции по схемотехнике

На нашем литературном портале можно бесплатно читать книгу Лекции по схемотехнике, Автор неизвестен-- . Жанр: Физика / Технические науки / Компьютерное железо. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Лекции по схемотехнике
Название: Лекции по схемотехнике
Дата добавления: 15 январь 2020
Количество просмотров: 270
Читать онлайн

Лекции по схемотехнике читать книгу онлайн

Лекции по схемотехнике - читать бесплатно онлайн , автор Автор неизвестен

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 2 3 4 5 6 7 8 9 10 ... 23 ВПЕРЕД
Перейти на страницу:

Элементы универсальных базисов позволяют реализовать все три основные логические операции (Рисунок 6). Например, для осуществления операции НЕ с помощью элемента И-НЕ достаточно объединить входы

Лекции по схемотехнике - image038.png
  (рисунок 6,а). Аналогично и для элемента ИЛИ-НЕ.

Лекции по схемотехнике - image039.png

Рисунок 6 Реализация функций НЕ, И и ИЛИ на элементах И-НЕ

При последовательном соединении элемента И-НЕ и инвертора осуществляется операция логического умножения:

Лекции по схемотехнике - image040.png
  (рисунок 6,б). Такое же соединение элементов ИЛИ-НЕ реализует операцию логического сложения: 
Лекции по схемотехнике - image041.png

Применение трёх элементов И-НЕ, два из которых работают в режиме инвертирования с объединёнными входами (рисунок 6,в), позволяют реализовать операцию логического сложения

Лекции по схемотехнике - image042.png
. Соединение трёх логических элементов ИЛИ-НЕ позволяет реализовать операцию логического умножения 
Лекции по схемотехнике - image043.png

В общем случае логическая функция Y может зависеть от нескольких переменных X1,X2,…,Xn. Говорят, что функция Y определена, если известны её значения для всех возможных наборов переменных. Функция Y не определена, когда некоторые сочетания переменных по условию задачи невозможны. В этом случае её можно доопределить, приписав ей значение «1» либо «0» по соображениям удобства реализации.

2.4 Минимизация логических формул

Однозначная зависимость сложности логической формулы и функциональной схемы логического устройства приводят к выводу   необходимости минимизации структурной формулы логического устройства. Минимизация осуществляется с использованием основных  соотношений, законов и теорем алгебры логики.

2.4.1 Расчётный метод минимизации

Применение этого метода состоит в последовательном применении к некоторой формуле законов и правил тождественных  преобразований алгебры логики. При этом широко используют следующие приёмы: прибавление одного или нескольких членов, входящих в СДНФ, поскольку X ∨ X ∨ X = X; выделение членов, содержащих множитель

Лекции по схемотехнике - image045.png
; использование правила склеивания и др. Получающаяся в результате минимизации алгебраическая формула называется тупиковой. Функция может иметь несколько тупиковых форм. 

Пример: Минимизировать функцию СДНФ мажоритарного элемента (См. п.2.2) и реализовать его схему на элементах основного базиса.

Лекции по схемотехнике - image026.png

Склеивая первые три минтерма с четвёртым, получаем ДНФ функции мажоритарного элемента, которая проще СДНФ: 

Y = X1·X2X1·X3X2·X3 

Минимизированная функциональная схема мажоритарного элемента приведена на рисунке 7.

Лекции по схемотехнике - image048.png

Рисунок 7 Функциональная схема мажоритарного элемента, реализованная на основе минимизированной функции ДНФ 

Из сравнения схем, приведённых на рисунках 3 и 7 следует, что в минимизированной схеме число по Квайну уменьшилось с 19 до 9.

Метод минимизирующих карт Карно

Карты Карно — это графическое представление таблиц истинности логических функций. Они содержат по 2n ячеек, где n — число логических переменных. Например, карта Карно для функции трёх переменных содержит 2n=23=8 ячеек, для четырёх переменных — 24=16 ячеек.

Карта размечается системой координат, соответствующих значениям входных переменных. Обратим особое внимание на то, что координаты столбцов (а также и строк, если n>3), следуют не в естественном порядке возрастания двоичных кодов, а так: 00 01 11 10. Это делается для того, чтобы соседние наборы (в том числе и столбцов 1 и 4) отличались лишь одной цифрой в каком-либо разряде. 

Процесс минимизации заключается в формировании правильных прямоугольников, содержащих по 2k ячеек, где k — целое число. В прямоугольники объединяются соседние ячейки, которые соответствуют соседним элементарным произведениям (т. е. отличаются только в одном разряде). 

Несмотря на то, что карты Карно изображаются на плоскости, соседство квадратов устанавливается на поверхности тора. Верхняя и нижняя границы карты как бы склеиваются, образуя поверхность цилиндра. При склеивании боковых границ получается поверхность тора. 

Пример: Минимизировать функцию трёх переменных, заданную таблицей истинности (таблица 6).

Таблица 6 Таблица истинности функции трёх переменных 

X1 X2 X3 Y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 0 0
1 1 1 0  

СДНФ функции:

Лекции по схемотехнике - image051.png

Составляем карту Карно и производим разметку её сторон:

Лекции по схемотехнике - image052.png

Рисунок 8 Карта Карно функции 3-х переменных.

На карте Карно формируем два прямоугольника. Первый из них объединяет (как бы заключает в скобки) два первых минтерма (слагаемых), а второй — первое и третье слагаемые СДНФ минимизируемой функции, приведённой выше. Минтермы, объединённые в прямоугольники, отличаются только в одном разряде. Их неизменяемая часть, которая при минимизации расчётным методом выносится за скобки, и является минимизированным значением функции:

Лекции по схемотехнике - image053.png

Таким образом, карта Карно позволяет поместить рядом, то есть в соседних ячейках, соседние элементарные произведения, отличающиеся только одним сомножителем.

Последовательность действий при минимизации: 

1 Изображается карта Карно и производится разметка её сторон.

2 Ячейки карты Карно, соответствующие наборам переменных, обращающих функцию в «1», заполняются единицами, остальные — нулями.

3 Выбирается наилучшее покрытие карты прямоугольниками. Наилучшим считается покрытие, образованное минимальным числом прямоугольников, а если таких вариантов несколько, то выбирается тот, который даёт максимальную площадь прямоугольников.

Пример: Минимизировать функцию четырёх переменных, представленную картой Карно: (Рисунок 9).

Лекции по схемотехнике - image054.png

Рисунок 9 Карта Карно функции 4-х переменных

1 2 3 4 5 6 7 8 9 10 ... 23 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название