-->

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

На нашем литературном портале можно бесплатно читать книгу Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики, Сасскинд Леонард-- . Жанр: Физика / Научпоп. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Название: Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Дата добавления: 15 январь 2020
Количество просмотров: 214
Читать онлайн

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики читать книгу онлайн

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - читать бесплатно онлайн , автор Сасскинд Леонард

Что происходит, когда объект падает в чёрную дыру? Исчезает ли он бесследно? Около тридцати лет назад один из ведущих исследователей феномена чёрных дыр, ныне знаменитый британский физик Стивен Хокинг заявил, что именно так и происходит. Но оказывается, такой ответ ставит под угрозу всё, что мы знаем о физике и фундаментальных законах Вселенной. Автор этой книги, выдающийся американский физик Леонард Сасскинд много лет полемизировал со Стивеном Хокингом о природе чёрных дыр, пока, наконец, в 2004 году, тот не признал свою ошибку. Блестящая и на редкость легко читаемая книга рассказывает захватывающую историю этого многолетнего научного противостояния, радикально изменившего взгляд физиков на природу реальности. Новая парадигма привела к ошеломляющему выводу о том, что всё в нашем мире — эта книга, ваш дом, вы сами — лишь своеобразная голограмма, проецирующаяся с краёв Вселенной.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 72 73 74 75 76 77 78 79 80 ... 88 ВПЕРЕД
Перейти на страницу:

Я даже не знал, что Сен занимался чёрными дырами. Но вскоре после того, как я вернулся в Соединённые Штаты из поездки в Кембриджд, кто-то — думаю, это была Аманда Пит — вручил мне для прочтения его статью. Она была длинная и техническая, но в последних нескольких абзацах Ашок применял идеи теории струн — те, что я описывал в Ратджерсе, — чтобы вычислить энтропию нового класса экстремальных чёрных дыр.

Чёрная дыра Сена была сделана из деталей, о которых мы знали в 1993 году, — фундаментальных струн и шести дополнительных свёрнутых размерностей пространства. То, что сделал Сен, было простым, но очень ясным развитием моих собственных ранних идей. Его главная инновация состояла в том, чтобы начать со струны не только очень сильно возбуждённой, но также ещё и многократно охватывающей одно из свёрнутых измерений. В упрощённом цилиндрическом мире — расширенной версии Лайнландии — витки струны выглядят как резиновая лента, обёрнутая вокруг куска пластиковой трубы.

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - i_193.jpg

Такие струны тяжелее обычных частиц, поскольку требуется энергия для того, чтобы растянуть их вокруг цилиндра. В типичной теории струн масса витка струны может составлять несколько процентов планковской массы.

Затем Сен взял простую струну и дважды обернул её вокруг цилиндра.

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - i_194.jpg

Струнные теоретики сказали бы, что эта струна имеет винтовое число [144], равное 2, и она ещё тяжелее, чем струна, делающая один виток. Но что, если струна намотана вокруг свёрнутого измерения не один или два раза, а миллиарды раз?

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - i_195.jpg

На количество оборотов струны вокруг свёрнутого измерения пространства нет ограничений. В результате она может сравниться по массе со звездой или даже с галактикой. Но место, которое она занимает в обычном пространстве, то есть в несвернутых размерностях обычного трёхмерного пространства, очень мало. Вся эта масса заключена в столь крошечном пространстве, что она гарантированно будет чёрной дырой.

Сен применил ещё одну хитрость, ещё один ингредиент теории струн образца 1993 года: извивы, движущиеся вдоль струны. Информация должна была скрываться в особенностях этих извивов, в точности как я описывал это годом ранее.

Извивы на эластичной струне не остаются неподвижными. Они распространяются вдоль струны, подобно волнам: одни по часовой стрелке, а другие против. Два извива, движущиеся в одном направлении, гонятся друг за другом по струне, никогда не сталкиваясь. Однако если две волны движутся в противоположных направлениях, они сталкиваются, порождая сложную мешанину. Поэтому Сен решил хранить всю скрытую информацию в волнах, движущихся «в ногу» по часовой стрелке без всяких столкновений.

Когда все ингредиенты были собраны и различные рукоятки включены, у струны Сена не было других возможностей, кроме как превратиться в чёрную дыру. Но вместо обычной чёрной дыры из-за накручивания струны вокруг свёрнутого измерения появляется совершенно особый тип экстремальной чёрной дыры.

Экстремальная чёрная дыра электрически заряжена. Но где же электрический заряд? Ответ был известен уже много лет: накручивание струны на компактизированное измерение придаёт ей электрический заряд. Каждый оборот струны добавляет одну единицу заряда. Если струна намотана в одном направлении, получается положительный заряд, если в противоположном — отрицательный. Гигантские многократно намотанные струны Сена также могут рассматриваться как сгустки электрического заряда, скрепляемые гравитацией, — иными словами, как заряженная чёрная дыра.

Площадь — это геометрическое понятие, а геометрия пространства и времени управляется эйнштейновской общей теорией относительности. Единственный способ узнать площадь горизонта чёрной дыры — это вывести её из уравнений Эйнштейна для гравитации. Сен мастерски владел этими уравнениями и легко (легко для него) решил их для специального сконструированного им типа чёрных дыр, а затем вычислил площадь горизонта.

И тут случилась катастрофа! Когда уравнения были решены и площадь горизонта подсчитана, результат оказался равным нулю! Иными словами, вместо замечательной обширной оболочки горизонт сжался до размеров точки пространства. Вся энтропия, запасённая в извивающихся, змеящихся струнах, была, похоже, сконцентрирована в крошечной точке. Это не только было проблемой для чёрных дыр, но и прямо противоречило голографическому принципу, утверждающему, что максимальная энтропия области пространства равна её площади в планковских единицах. Где-то была допущена ошибка.

Сен ясно видел, что возникла проблема. Уравнения Эйнштейна классические, то есть они игнорируют эффекты квантовых флуктуаций. Без квантовых флуктуаций электрон в атоме водорода упал бы на ядро, и весь атом стал бы по размеру не больше протона. Но квантовые движения в основном состоянии, вызванные принципом неопределённости, делают атом в 100 000 раз больше ядра. Сен понял, что то же самое может происходить и с горизонтом. Хотя классическая физика предсказывает, что он должен сжиматься в точку, квантовые флуктуации могли бы расширить его до того, что я называю растянутым горизонтом.

Сен внёс необходимые поправки: быстрая, «на обороте конверта», оценка показала, что энтропия и площадь растянутого горизонта действительно пропорциональны друг другу. Это был ещё один триумф струйной теории энтропии горизонта, но, как и прежде, победа была неполной. Точность вновь ускользнула; оставалась неопределённость относительно того, насколько именно квантовые флуктуации могут растянуть горизонт. Блестящая работа Сена по-прежнему заканчивалась расплывчатой тильдой. Максимум, что он мог сказать, это то, что энтропия чёрной дыры пропорциональна площади горизонта. Это было почти попадание, но «почти» не считается. «Последний гвоздь в гроб» ещё предстояло рассчитать.

Это почти состоявшееся вычисление имело не больше шансов убедить Стивена Хокинга, чем мои аргументы. Тем не менее кольцо смыкалось. Для реализации предложения Вафы и создания экстремальной чёрной дыры с большим классическим горизонтом требовались новые детали конструктора «Тинкертой». К счастью, их уже готовы были открыть в Санта-Барбаре.

D-браны Полчински

D-браны следовало бы называть Р-бранами — по инициалу Полчински. Но к тому времени, когда Джо открыл свои браны, термин Р-браны уже использовался для совсем другого объекта. Поэтому Джо назвал свои — D-бранами, в честь немецкого математика девятнадцатого века Иоганна Дирихле. Тот, конечно, ничего непосредственно с D-бранами не делал, но его математические исследования волн имели к ним некоторое отношение.

Слово брана не встречается в словарях, кроме как в контексте теории струн. Оно происходит от общеупотребительного термина мембрана, означающего двумерную поверхность, способную изгибаться и растягиваться. Открытие свойств D-бран, сделанное Полчински в 1995 году, было одним из самых важных событий в истории современной физики. Вскоре оно принесло замечательные результаты во всех областях — от чёрных дыр до ядерной физики.

Простейшая брана — это нульмерный объект, называемый О-браной. Частица или точка пространства нульмерна, по точке невозможно перемещаться, поэтому частица и 0-брана — это синонимы. Сдвинувшись на один уровень, мы получаем 1-браны, которые одномерны. Фундаментальные струны — это частный случай

1-бран. Мембраны — двумерные листы материи — это 2-браны. А что можно сказать о 3-бранах? Они существуют? Представьте себе твёрдый куб из резины, заполняющий некоторую область пространства. Его можно назвать заполняющей пространство 3-браной.

Может показаться, что мы исчерпали измерения. Очевидно, что нет возможности уложить 4-брану в трёхмерное пространство. Но что, если у пространства есть свёрнутые измерения, шесть штук, например? В этом случае одно из измерений 4-браны может тянуться в свёрнутом измерении. В действительности если всего cyществует девять измерений пространства, то в нём могут содержаться любые виды бран, вплоть до 9-бран.

1 ... 72 73 74 75 76 77 78 79 80 ... 88 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название